361 research outputs found
Percent Fat Mass Increases with Recovery, But Does Not Vary According to Dietary Therapy in Young Malian Children Treated for Moderate Acute Malnutrition.
BackgroundModerate acute malnutrition (MAM) affects 34.1 million children globally. Treatment effectiveness is generally determined by the amount and rate of weight gain. Body composition (BC) assessment provides more detailed information on nutritional stores and the type of tissue accrual than traditional weight measurements alone.ObjectiveThe aim of this study was to compare the change in percentage fat mass (%FM) and other BC parameters among young Malian children with MAM according to receipt of 1 of 4 dietary supplements, and recovery status at the end of the 12-wk intervention period.MethodsBC was assessed using the deuterium oxide dilution method in a subgroup of 286 children aged 6-35 mo who participated in a 12-wk community-based, cluster-randomized effectiveness trial of 4 dietary supplements for the treatment of MAM: 1) lipid-based, ready-to-use supplementary food (RUSF); 2) special corn-soy blend "plus plus" (CSB++); 3) locally processed, fortified flour (MI); or 4) locally milled flours plus oil, sugar, and micronutrient powder (LMF). Multivariate linear regression modeling was used to evaluate change in BC parameters by treatment group and recovery status.ResultsMean ± SD %FM at baseline was 28.6% ± 5.32%. Change in %FM did not vary between groups. Children who received RUSF vs. MI gained more (mean; 95% CI) weight (1.43; 1.13, 1.74 kg compared with 0.84; 0.66, 1.03 kg; P = 0.02), FM (0.70; 0.45, 0.96 kg compared with 0.20; 0.05, 0.36 kg; P = 0.01), and weight-for-length z score (1.23; 0.79, 1.54 compared with 0.49; 0.34, 0.71; P = 0.03). Children who recovered from MAM exhibited greater increases in all BC parameters, including %FM, than children who did not recover.ConclusionsIn this study population, children had higher than expected %FM at baseline. There were no differences in %FM change between groups. International BC reference data are needed to assess the utility of BC assessment in community-based management of acute malnutrition programs. This trial was registered at clinicaltrials.gov as NCT01015950
Body-composition reference data for simple and reference techniques and a 4-component model: A new UK reference child
Background: A routine pediatric clinical assessment of body composition is increasingly recommended but has long been hampered by the following 2 factors: a lack of appropriate techniques and a lack of reference data with which to interpret individual measurements. Several techniques have become available, but reference data are needed. Objective: We aimed to provide body-composition reference data for use in clinical practice and research. Design: Body composition was measured by using a gold standard 4-component model, along with various widely used reference and bedside methods, in a large, representative sample of British children aged from 4 to ≥20 y. Measurements were made of anthropometric variables (weight, height, 4 skinfold thicknesses, and waist girth), dual-energy X-ray absorptiometry, body density, bioelectrical impedance, and total body water, and 4-component fat and fat-free masses were calculated. Reference charts and SD scores (SDSs) were constructed for each outcome by using the lambda-mu-sigma method. The same outcomes were generated for the fat-free mass index and fat mass index. Results: Body-composition growth charts and SDSs for 5-20 y were based on a final sample of 533 individuals. Correlations between SDSs by using different techniques were ≥0.68 for adiposity outcomes and ≥0.80 for fat-free mass outcomes. Conclusions: These comprehensive reference data for pediatric body composition can be used across a variety of techniques. Together with advances in measurement technologies, the data should greatly enhance the ability of clinicians to assess and monitor body composition in routine clinical practice and should facilitate the use of body-composition measurements in research studies. © 2012 American Society for Nutrition
Sexual dimorphism in relation to adipose tissue and intrahepatocellular lipid deposition in early infancy
Sexual dimorphism in adiposity is well described in adults, but the age at which differences first manifest is uncertain. Using a prospective cohort, we describe longitudinal changes in directly measured adiposity and intrahepatocellular lipid (IHCL) in relation to sex in healthy term infants. At median ages of 13 and 63 days, infants underwent quantification of adipose tissue depots by whole-body magnetic resonance imaging and measurement of IHCL by in vivo proton magnetic resonance spectroscopy. Longitudinal data were obtained from 70 infants (40 boys and 30 girls). In the neonatal period girls are more adipose in relation to body size than boys. At follow-up (median age 63 days), girls remained significantly more adipose. The greater relative adiposity that characterises girls is explained by more subcutaneous adipose tissue and this becomes increasingly apparent by follow-up. No significant sex differences were seen in IHCL. Sex-specific differences in infant adipose tissue distribution are in keeping with those described in later life, and suggest that sexual dimorphism in adiposity is established in early infancy
Quantification of the energy gap in young overweight children. The PIAMA birth cohort study
Background: Overweight develops gradually as a result of a long term surplus on the balance between energy intake and energy expenditure. Aim of this study was to quantify the positive energy balance responsible for excess body weight gain (energy gap) in young overweight children. Methods. Reported data on weight and height were used of 2190 Dutch children participating in the PIAMA birth cohort study. Accumulated body energy was estimated from the weight gain observed between age 2 and age 5-7. Energy gap was calculated as the difference in positive energy balance between children with and without overweight assuming an energy efficiency of 50%. Results: Ten percent of the children were overweight at the age of 5-7 years. For these children, median weight gain during 4-years follow-up was 13.3 kg, as compared to 8.5 kg in the group of children who had a normal weight at the end of the study. A daily energy gap of 289-320 kJ (69-77 kcal) was responsible for the excess weight gain or weight maintenance in the majority of the children who were overweight at the age of 5-7 years. The increase in daily energy requirement to maintain the 4.8 kilograms excess weight gain among overweight children at the end of the study was approximately 1371 kJ. Conclusions: An energy gap of about 289-320 kJ per day over a number of years can make the difference between normal weight and overweight in young children. Closing the energy gap in overweight children can be achieved by r
The effects of varying protein and energy intakes on the growth and body composition of very low birth weight infants
<p>Abstract</p> <p>Objective</p> <p>To determine the effects of high dietary protein and energy intake on the growth and body composition of very low birth weight (VLBW) infants.</p> <p>Study design</p> <p>Thirty-eight VLBW infants whose weights were appropriate for their gestational ages were assessed for when they could tolerate oral intake for all their nutritional needs. Thirty-two infants were included in a longitudinal, randomized clinical trial over an approximate 28-day period. One control diet (standard preterm formula, group A, n = 8, 3.7 g/kg/d of protein and 129 kcal/kg/d) and two high-energy and high-protein diets (group B, n = 12, 4.2 g/kg/d and 150 kcal/kg/d; group C, n = 12, 4.7 g/kg/d and 150 kcal/kg/d) were compared. Differences among groups in anthropometry and body composition (measured with bioelectrical impedance analysis) were determined. An enriched breast milk group (n = 6) served as a descriptive reference group.</p> <p>Results</p> <p>Groups B and C displayed greater weight gains and higher increases in fat-free mass than group A.</p> <p>Conclusion</p> <p>An intake of 150 kcal/kg/d of energy and 4.2 g/kg/d of protein increases fat-free mass accretion in VLBW infants.</p
Early-Life Determinants of Total and HDL Cholesterol Concentrations in 8-Year-Old Children; The PIAMA Birth Cohort Study
BACKGROUND: Adult cholesterol concentrations might be influenced by early-life factors, such as breastfeeding and birth weight, referred to as "early programming". How such early factors exert their influence over the life course is still poorly understood. Evidence from studies in children and adolescents is scarce and conflicting. We investigated the influence of 6 different perinatal risk factors on childhood total and HDL cholesterol concentrations and total-to-HDL cholesterol ratio measured at 8 years of age, and additionally we studied the role of the child's current Body Mass Index (BMI). METHODS: Anthropometric measures and blood plasma samples were collected during a medical examination in 751 8-year-old children participating in the prospective Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort study. Linear and logistic regression were performed to estimate associations of total and HDL cholesterol concentrations with breastfeeding, birth weight, infant weight gain, maternal overweight before pregnancy, gestational diabetes and maternal smoking during pregnancy, taking into account the child's current BMI. RESULTS: Linear regressions showed an association between total-to-HDL cholesterol ratio and maternal pre-pregnancy overweight (β = 0.15, Confidence Interval 95% (CI): 0.02, 0.28), rapid infant weight gain (β = 0.13, 95%CI: 0.01, 0.26), and maternal smoking during pregnancy (β = 0.14, 95%CI: 0.00, 0.29). These associations were partly mediated by the child's BMI. CONCLUSION: Total-to-HDL cholesterol ratio in 8-year-old children was positively associated with maternal pre-pregnancy overweight, maternal smoking during pregnancy and rapid infant weight gain
Childhood obesity and risk of the adult metabolic syndrome: a systematic review.
This is an Open Access articleBackground: While many studies have demonstrated positive associations between childhood obesity and adult metabolic risk, important questions remain as to the nature of the relationship. In particular, it is unclear whether the associations reflect the tracking of body mass index (BMI) from childhood to adulthood or an independent level of risk. This systematic review aimed to investigate the relationship between childhood obesity and a range of metabolic risk factors during adult life.
Objective: To perform an unbiased systematic review to investigate the association between childhood BMI and risk of developing components of metabolic disease in adulthood, and whether the associations observed are independent of adult BMI.
Design: Electronic databases were searched from inception until July 2010 for studies investigating the association between childhood BMI and adult metabolic risk. Two investigators independently reviewed studies for eligibility according to the inclusion/exclusion criteria, extracted the data and assessed study quality using the Newcastle–Ottawa Scale.
Results: The search process identified 11 articles that fulfilled the inclusion and exclusion criteria. Although several identified weak positive associations between childhood BMI and adult total cholesterol, low-density lipo protein-cholesterol, triglyceride and insulin concentrations, these associations were ameliorated or inversed when adjusted for adult BMI or body fatness. Of the four papers that considered metabolic syndrome as an end point, none showed evidence of an independent association with childhood obesity.
Conclusions: Little evidence was found to support the view that childhood obesity is an independent risk factor for adult blood lipid status, insulin levels, metabolic syndrome or type 2 diabetes. The majority of studies failed to adjust for adult BMI and therefore the associations observed may reflect the tracking of BMI across the lifespan. Interestingly, where adult BMI was adjusted for, the data showed a weak negative association between childhood BMI and metabolic variables, with those at the lower end of the BMI range in childhood, but obese during adulthood at particular risk
Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21(st) project.
Background We aimed to describe newborn body composition and identify which anthropometric ratio (weight/length; BMI; or ponderal index, PI) best predicts fat mass (FM) and fat-free mass (FFM).
Methods Air-displacement plethysmography (PEA POD) was used to estimate FM, FFM, and body fat percentage (BF%). Associations between FFM, FM, and BF% and weight/length, BMI, and PI were evaluated in 1,019 newborns using multivariate regression analysis. Charts for FM, FFM, and BF% were generated using a prescriptive subsample (n=247). Standards for the best-predicting anthropometric ratio were calculated utilizing the same population used for the INTERGROWTH-21(st) Newborn Size Standards (n=20,479).
Results FFM and FM increased consistently during late pregnancy. Differential FM, BF%, and FFM patterns were observed for those born preterm (34(+0)-36(+6) weeks' gestation) and with impaired intrauterine growth. Weight/length by gestational age (GA) was a better predictor of FFM and FM (adjusted R(2)=0.92 and 0.71, respectively) than BMI or PI, independent of sex, GA, and timing of measurement. Results were almost identical when only preterm newborns were studied. We present sex-specific centiles for weight/length ratio for GA.
Conclusions Weight/length best predicts newborn FFM and FM. There are differential FM, FFM, and BF% patterns by sex, GA, and size at birth
The efficacy of hypotonic and near-isotonic saline for parenteral fluid therapy given at low maintenance rate in preventing significant change in plasma sodium in post-operative pediatric patients: protocol for a prospective randomized non-blinded study
<p>Abstract</p> <p>Background</p> <p>Hyponatremia is the most frequent electrolyte abnormality observed in post-operative pediatric patients receiving intravenous maintenance fluid therapy. If plasma sodium concentration (p-Na<sup>+</sup>) declines to levels below 125 mmol/L in < 48 h, transient or permanent brain damage may occur. There is an intense debate as to whether the administered volume (full rate <it>vs. </it>restricted rate of infusion) and the composition of solutions used for parenteral maintenance fluid therapy (hypotonic <it>vs. </it>isotonic solutions) contribute to the development of hyponatremia. So far, there is no definitive pediatric data to support a particular choice of parenteral fluid for maintenance therapy in post-surgical patients.</p> <p>Methods/Design</p> <p>Our prospective randomized non-blinded study will be conducted in healthy children and adolescents aged 1 to 14 years who have been operated for acute appendicitis. Patients will be randomized either to intravenous hypotonic (0.23% or 0.40% sodium chloride in glucose, respectively) or near-isotonic (0.81% sodium chloride in glucose) solution given at approximately three-fourths of the average maintenance rate. The main outcome of interest from this study is to evaluate 24 h post-operatively whether differences in p-Na<sup>+ </sup>between treatment groups are large enough to be of clinical relevance. In addition, water and electrolyte balance as well as regulatory hormones will be measured.</p> <p>Discussion</p> <p>This study will provide valuable information on the efficacy of hypotonic and near-isotonic fluid therapy in preventing a significant decrease in p-Na<sup>+</sup>. Finally, by means of careful electrolyte and water balance and by measuring regulatory hormones our results will also contribute to a better understanding of the physiopathology of post-operative changes in p-Na<sup>+ </sup>in a population at risk for hyponatremia.</p> <p>Trial registration</p> <p>The protocol for this study is registered with the current controlled trials registry; registry number: <a href="http://www.controlled-trials.com/ISRCTN43896775">ISRCTN43896775</a>.</p
- …