7 research outputs found

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two

    Electronic Energy Spectra of Square and Cubic Fibonacci Quasicrystals

    Full text link
    Understanding the electronic properties of quasicrystals, in particular the dependence of these properties on dimension, is among the interesting open problems in the field of quasicrystals. We investigate an off-diagonal tight-binding Hamiltonian on the separable square and cubic Fibonacci quasicrystals. We use the well-studied singular-continuous energy spectrum of the 1-dimensional Fibonacci quasicrystal to obtain exact results regarding the transitions between different spectral behaviors of the square and cubic quasicrystals. We use analytical results for the addition of 1d spectra to obtain bounds on the range in which the higher-dimensional spectra contain an absolutely continuous component. We also perform a direct numerical study of the spectra, obtaining good results for the square Fibonacci quasicrystal, and rough estimates for the cubic Fibonacci quasicrystal

    In search of multipolar order on the Penrose tiling

    Full text link
    Based on Monte Carlo calculations, multipolar ordering on the Penrose tiling, relevant for two-dimensional molecular adsorbates on quasicrystalline surfaces and for nanomagnetic arrays, has been analyzed. These initial investigations are restricted to multipolar rotors of rank one through four - described by spherical harmonics Ylm with l=1...4 and restricted to m=0 - positioned on the vertices of the rhombic Penrose tiling. At first sight, the ground states of odd-parity multipoles seem to exhibit long-range multipolar order, indicated by the appearance of a superstructure in the form of the decagonal Hexagon-Boat-Star tiling, in agreement with previous investigations of dipolar systems. Yet careful analysis establishes that long-range multipolar order is absent in all cases investigated here, and only short-range order exists. This result should be taken as a warning for any future analysis of order in either real or simulated arrangements of multipoles on quasiperiodic templates

    Quantum Diffusion in Separable d-Dimensional Quasiperiodic Tilings

    Full text link
    We study the electronic transport in quasiperiodic separable tight-binding models in one, two, and three dimensions. First, we investigate a one-dimensional quasiperiodic chain, in which the atoms are coupled by weak and strong bonds aligned according to the Fibonacci chain. The associated d-dimensional quasiperiodic tilings are constructed from the product of d such chains, which yields either the square/cubic Fibonacci tiling or the labyrinth tiling. We study the scaling behavior of the mean square displacement and the return probability of wave packets with respect to time. We also discuss results of renormalization group approaches and lower bounds for the scaling exponent of the width of the wave packet.Comment: 6 pages, 4 figures, conference proceedings Aperiodic 2012 (Cairns

    A molecular overlayer with the Fibonacci square grid structure

    Get PDF
    Quasicrystals differ from conventional crystals and amorphous materials in that they possess long-range order without periodicity. They exhibit orders of rotational symmetry which are forbidden in periodic crystals, such as five-, ten-, and twelve-fold, and their structures can be described with complex aperiodic tilings such as Penrose tilings and Stampfli-Gaehler tilings. Previous theoretical work explored the structure and properties of a hypothetical four-fold symmetric quasicrystal-the so-called Fibonacci square grid. Here, we show an experimental realisation of the Fibonacci square grid structure in a molecular overlayer. Scanning tunnelling microscopy reveals that fullerenes (C ) deposited on the two-fold surface of an icosahedral Al-Pd-Mn quasicrystal selectively adsorb atop Mn atoms, forming a Fibonacci square grid. The site-specific adsorption behaviour offers the potential to generate relatively simple quasicrystalline overlayer structures with tunable physical properties and demonstrates the use of molecules as a surface chemical probe to identify atomic species on similar metallic alloy surfaces

    Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs

    Get PDF
    Solutions of certain finite-difference schemes for singularly-perturbed evolutionary PDEs converge as the perturbation parameter and/or the discretization parameters tend to zero. Under suitable hypotheses a sharp convergence rate of order one-half in the time step, uniform in the perturbation parameter, is obtained
    corecore