128 research outputs found

    Superconducting Vortices and Elliptical Ferromagnetic Textures

    Full text link
    In this article an analytical and numerical study of superconducting thin film with ferromagnetic textures of elliptical geometries in close proximity is presented. The screening currents induced in the superconductor due to the magnetic texture are calculated. Close to the superconducting transition temperature TcT_c the spontaneous creation of superconducting vortices becomes energy favorable depending on the value of the magnetization and the geometrical quantities of the magnetic texture. The creation of vortices by elliptic dots is more energy favorable than those created by circular ones. The superconductor covered by elliptic dots array exhibits anisotropic transport properties.Comment: 4 pages, 5figure

    Theory of pinning in a Superconducting Thin Film Pierced by a Ferromagnetic Columnar Defect

    Full text link
    This is an analytical study of pinning and spontaneous vortex phase is a system consisting of a superconducting thin film pierced by a long ferromagnetic columnar defect of finite radius RR. The magnetic fields, screening currents, energy and pinning forces for this system are calculated. The interaction between the magnetic field of vortices and the magnetization outside the plane of the film and its close proximity enhances vortex pinning significantly. Spontaneous vortex phase appears when the magnetization of the columnar defect is increased above a critical value. Transitions between phases characterized by different number of flux quanta are also studied. These results are generalized to the case when the superconductor is pierced by an array of columnar defects.Comment: 6 pages, 4 figures, Accepted for publication in Phys. Rev.

    Superconducting Transition Temperature in Heterogeneous Ferromagnet-Superconductor Systems

    Get PDF
    We study the shift of the the superconducting transition temperature TcT_c in ferromagnetic-superconducting bi-layers and in a superconducting film supplied a square array of ferromagnetic dots. We find that the transition temperature in these two cases change presumably in opposite direction and that its change is not too small. We extend these results to multilayer structures. We predict that rather small external magnetic field āˆ¼10\sim 10 Oe can change the transition temperature of the bilayer by 10% .Comment: 9 pages, 2 figure

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Antivortices due to competing orbital and paramagnetic pair-breaking effects

    Full text link
    Thermodynamically stable vortex-antivortex structures in a quasi-two-dimensional superconductor in a tilted magnetic field are predicted. For this geometry, both orbital and spin pair-breaking effects exist, with their relative strength depending on the tilt angle \Theta. The spectrum of possible states contains as limits the ordinary vortex state (for large \Theta) and the Fulde-Ferrell-Larkin-Ovchinnikov state (for \Theta=0). The quasiclassical equations are solved near H_{c2} for arbitrary \Theta and it is shown that stable states with coexisting vortices and antivortices exist in a small interval close to \Theta=0. The results are compared with recent predictions of antivortices in mesoscopic samples.Comment: 11 pages, 3 figure

    Interaction of mesoscopic magnetic textures with superconductors

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org/Here we report a method to calculate the vortex and magnetization arrangement for a system of interacting superconductors and ferromagnets separated in space. The method is based on static London-Maxwell equations and the corresponding energy. Possible superconducting vortices are included in this system. Using this method we analyze screening currents in a superconducting film induced by magnetic textures in a thin magnetic film. We assume that the two films are parallel and positioned close to each to other, but interact exclusively via magnetic fields. We also consider possible vortices within this superconducting film and their interactions with magnetic texture. As an example of such magnetic texture we use a single magnetic dot with magnetization either perpendicular or parallel to the film. We derive a condition where spontaneous formation of one, two, or more vortices and antivortices is energetically favorable. We prove that, in the case of such a circular magnetic dot with perpendicular magnetization, when the vortex emerges in the superconducting film the normal component of magnetic field near the superconducting film changes sign outside of the dot range

    Andreev conductance of a domain wall

    Get PDF
    At low temperatures, the transport through a superconductor-ferromagnet tunnel interface is due to tunneling of electrons in pairs. Exchange field of a monodomain ferromagnet aligns electron spins and suppresses the two electron tunneling. The presence of the domain walls at the SF interface strongly enhances the subgap current. The Andreev conductance is proven to be proportional to the total length of domain walls at the SF interface.Comment: 4 pages and 1 figur

    Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation

    Full text link
    The interaction between a superconducting vortex or antivortex in a superconducting film and a magnetic dipole with in- or out-of-plane magnetization is investigated within the London approximation. The dependence of the interaction energy on the dipole-vortex distance and the film thickness is studied and analytical results are obtained in limiting cases. We show how the short range interaction with the magnetic dipole makes the co-existence of vortices and antivortices possible. Different configurations with vortices and antivortices are investigated.Comment: 12 pages, 12 figures. Submitted to Phys. Rev.

    Phase diagram of a superconductor / ferromagnet bilayer

    Full text link
    The magnetic field (H) - temperature (T) phase diagram of a superconductor is significantly altered when domains are present in an underlying ferromagnet with perpendicular magnetic anisotropy. When the domains have a band-like shape, the critical temperature Tc of the superconductor in zero field is strongly reduced, and the slope of the upper critical field as a function of T is increased by a factor of 2.4 due to the inhomogeneous stray fields of the domains. Field compensation effects can cause an asymmetric phase boundary with respect to H when the ferromagnet contains bubble domains. For a very inhomogeneous domain structure, Tc~H^2 for low H and Tc~H for higher fields, indicating a dimensional crossover from a one-dimensional network-like to a two-dimensional behavior in the nucleation of superconductivity.Comment: 6 pages, 7 figure

    Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates

    Get PDF
    Summary:The Evolutionary Trace Annotation (ETA) Server predicts enzymatic activity. ETA starts with a structure of unknown function, such as those from structural genomics, and with no prior knowledge of its mechanism uses the phylogenetic Evolutionary Trace (ET) method to extract key functional residues and propose a function-associated 3D motif, called a 3D template. ETA then searches previously annotated structures for geometric template matches that suggest molecular and thus functional mimicry. In order to maximize the predictive value of these matches, ETA next applies distinctive specificity filtersā€”evolutionary similarity, function plurality and match reciprocity. In large scale controls on enzymes, prediction coverage is 43% but the positive predictive value rises to 92%, thus minimizing false annotations. Users may modify any search parameter, including the template. ETA thus expands the ET suite for protein structure annotation, and can contribute to the annotation efforts of metaservers
    • ā€¦
    corecore