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Interaction of mesoscopic magnetic textures with superconductors
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Here we report a method to calculate the vortex and magnetization arrangement for a system of interacting
superconductors and ferromagnets separated in space. The method is based on static London-Maxwell equa-
tions and the corresponding energy. Possible superconducting vortices are included in this system. Using this
method we analyze screening currents in a superconducting film induced by magnetic textures in a thin
magnetic film. We assume that the two films are parallel and positioned close to each to other, but interact
exclusively via magnetic fields. We also consider possible vortices within this superconducting film and their
interactions with magnetic texture. As an example of such magnetic texture we use a single magnetic dot with
magnetization either perpendicular or parallel to the film. We derive a condition where spontaneous formation
of one, two, or more vortices and antivortices is energetically favorable. We prove that, in the case of such a
circular magnetic dot with perpendicular magnetization, when the vortex emerges in the superconducting film
the normal component of magnetic field near the superconducting film changes sign outside of the dot range.
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I. INTRODUCTION Another such effect that was experimentally observed thus
far is the asymmetry of the superconducting hysteresis in
Recent studies of mesoscopic heterogeneouthe presence of magnetic dots, reported by Morgan and
ferromagnetic-superconducting systeifsSS’y opened an Kettersorr
interesting class of physical effects. In FSS’s the proximity In both theoretically proposed and experimentally realized
effect which suppresses both order parameters can HeSS's the magnetic texture interacts with the SC current.
avoided by introducing insulator oxide layers between ferroJnhomogeneous magnetization generates a magnetic field
magnetic(FM) and superconductingsC) components. Inho- putside the magnets, that in turn generates screening currents
mogeneous magnetization of the magnetic texture generatés superconductors which subsequently change the magnetic
a magnetic field penetrating into the superconductor. Theseld. The problem must be solved self-consistently. Here we
fields induce superconducting currents. The magnetic fieldevelop a method to calculate the inhomogeneous magneti-
from these supercurrents interacts with the magnetic sutzation and supercurrents including SC vortices in the Lon-
system, providing strong interaction between the two subdons approximation. We find elementary solutions for a cir-
systems. In order to study these effects several experiment@¥lar magnetic dot on top of a SC film. London’s approxi-
groups fabricated periodic arrays of magnetic dots and antiation is sufficient, since the sizes of all the structures in the
dots over or under a superconducting fifi.On the other ~Problem remarkably exceed the coherence lengttOur
hand several distinct mesoscopic FSS's were theoreticallinethod reduces the solution to a search of proper positions
proposed and analyzed. Such systems include arrays of maf@y vortices at fixed magnetization. Conversely, if the mag-
netic dots on the top of a SC filfit® FM-SC bilayers ! netization is variable, it is necessary to find a distribution that
magnetic nanorods embedded into a supercondifctogg- ~ Minimizes the energy. The latter is presented as an integral
netic stripes in superconducting filisa layer of magnetic ©ver the volume occupied by the magnets and superconduct-
dipoles between two bulk superconducttfsan array of Ors. In the next section we derive our method for the most

magnetic dipoles mimicking the FM dots on SC fitiend a ~ 9eneral three-dimensional FSS. In Sec. Ill we apply this
domain wall in a thick magnetic film on the bulk super- method to the case of very thin FM and SC films. In Sec. IV

conductort®!® Earlier Marmorkoset al'’ theoretically con- We consider magnetic dots on the top of SC film magnetized

sidered a “giant” magnetic dot which generates several vor£ither perpendicular or parallel to the film.
tices in a bulk superconductor.

First experimental studies of FSS’s focused on the pinning Il. THREE-DIMENSIONAL SYSTEMS
properties of magnetic dot arrays covered by a thin supercon- .
ducting film"2 resulting in the observation of the effect of the ~ The total energy of a stationary FM-SC system reads
commensurability between an Abrikosov vortex lattice and
the dot array on transport propertiesHowever, this effect B? ms”sV§
is not limited to the magnets interacting with superconduct- H_f EjL 2
ors, and was first found many years ago by Martinoli and his
group®® An investigation of the effects associated with thewhereB is the magnetic inductioryl is the magnetization,
violation of time-reversal symmetry that are most specific forng is the density of SC electrong)g is their effective mass
a FSS would hold greater promise. Theory predicts the ocandvg is their velocity. We assume the SC densityand the
currence of spontaneous currents in the ground $tatd?®°  magnetizatiorM to be separated in space. We also assume

—~B-M|dV, 1)
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that the magnetic fiel@® and its vector potentiah asymp- ngi? ) ngie B-M
totically approaches zero at infinity. After the static Maxwell H =f Bm (Vo) =7 CV<P'A_ — V. 9)
equationsV X B=(4m/c)j andB=V XA is an employed, the S S
magnetic field energy can be transformed as follows: This expression is correct with the caveat for a possible sur-
B2 LA face term for infinite magnetic systems. Note that integration
J —dV= J Ldv. 2) in the expression for enerd¥eq. (9)] proceeds over the vol-
8 2c ume occupied either by superconductors or by magnets.

Equation(9) allows one to separate the energy of vortices,

equation, it is gauge invariant due to the current conservatiof{!® €nergy of magnetization, and the energy of their interac-
divj=0. When integrating by parts, we neglect the surfacd!on. Indeed, as we noted earlier, the phase gradient can be

term. This approximation is correct if the field, vector poten-ascribed to dthe contributio_n dOf vor(tjex Iines alolne. I c?jn t_Je
tial, and current decrease sufficiently fast at infinity. The con/éPresented as a sum of independent integrals over distinct
ortex lines. The vector potential and the magnetic field can

dition is satisfied in the simple systems analyzed in this” L2
study. The currenjt can be represented as a sjirj -+ j,, of also be presented as a sum of magnetization-induced and

the SC and magnetic currents, respectively: vortex-induced part&\=An+A,, andB=B,+B,, where
Ay, andB, (the indexk is eitherm or v) are determined as

ngie 2 solutions of the Londons-Maxwell equations generated by
Js=m( —¢—A), € magnetization or by vortices respectively. The effect of the
S 0 SC screening of the magnetic field generated by magnetiza-
im=CVXM. (4  tion is already included in the vector fields, and By, . If
o ) ~such a separation of fields is applied, the total engEyy.
We regard contributions from magnetic and SC currents intq9)] logically becomes a sum of terms containing vortex con-

Although the vector potential enters explicitly into the last

integral (2) separately, starting with the integral tributions alone, magnetic contributions alone and interaction
1 1 terms. The purely magnetic component can be represented as
_f jm- AdV= _f (VXM)-AdV. (5) @ nonlocal quadratic form of the magnetization. The purely
2c 2 superconducting part becomes a nonlocal double integral

Integrating by part and neglecting the surface term again, w8Ve' the vortex lines. Finally, the interaction term may be
arrive at the following result; presented as a double integral over the vortex lines and the

volume occupied by the magnetization that is bilinear in
1. 1 magnetization and vorticity. To avoid cumbersome formulas,
Z_CJ jm-AdV= EJ M-BdV. (6)  we do not show these expressions explicitly.
Santoset al* developed a formalism for the calculation
We have omitted the integral over a remote surfgfa of magnetic fields and screening currents generated by a two-
XM)-AdS. Such an omission is justified if the magnetiza- dimensional array of magnetic dipoles confined between two
tion is confined to a limited volume. But for infinite magnetic bulk superconductors. This problem has a number of simi-
systems it may be wrong even in simplest problems. Thidarities with the one we consider. However, they did not con-
situation is discussed in Sec. . sider any singular current distributions, i.e., vortices. The
We then consider the contribution of the superconductinglomain wall in a thick magnetic layer on a bulk supercon-
currentj to integral(2). In the gauge-invariant equati@8), ductor was previously discussed by Bulaevsky and
¢ is the phase of the SC carrier wave function apig  Chudnovsky® Their model is limited to screening effects
=hc/2e is the (SO flux quantum. Note that the phase gra- only, while the generation of vortices is ignored. Helseth
dient V¢ can be included inté\ as a gauge transformation. et al!® theoretically analyzed the interaction between a vor-
The exception are vortex lines, whegeis singular. We use tex and domain wall in layers thicker than the domain wall
Eqg. (3) to express vector potentidl in terms of the super- width for the ferromagnetic layer, and thicker than the Lon-

current and the phase gradient: don penetration depth for the superconducting layer.
A= @V _ msC. ) 1. TWO-DIMENSIONAL TEXTURES AND VORTICES
S

Below we perform a detailed analysis in the case of par-
Plugging Eq.(7) into Eg.(2), we find allel FM and SC films, with both films very thin and posi-
tioned close to each other. Neglecting their thickness, we
1. h ) ms - assume both films to be located approximatelyz=at0. In
zf JjseAdV= Ef Ve-jdV- o ezf jsdV.  (8)  some cases we need a higher level of accuracy. We then
s introduce a small distanatbetween films, which in the end
Sincejs=enys, the last term in this equation is equal to is assigned a zero value. Though the thickness of each film is
minus kinetic energy, and thus exactly compensates for th@ssumed to be small, the two-dimensional densities of super-
kinetic energy in the initial expression for the eneidsq. carriersngz)znsdS and magnetizatioom=Md,, remain fi-
(1)]. Collecting all the remaining terms, we obtain the fol- nite. Hered, is the thickness of the SC film ardj, is the
lowing expression for the total energy: thickness of the FM film. The @ supercarrier density in the
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SC film is ng(R) = 8(z)n{®(r) and the 3d magnetization in | 4mimg

the FM film is M(R) = 8(z—d)m(r), wherer is the two- Amk:_k—ze z, (16)
dimensional radius vector and thelirection is chosen to be

perpendicular to the films. In what follows thel 5C density 1 Arri (k,ml — qmg)

n{?) is assumed to be a constant and ind2xis omitted. An=— WaéﬂL ki ekd (17

Energy(9) for this special case takes the form
Integration of the latter equation ovky allows one to find
the perpendicular component agm) :

H_f R LR ol S
=) em VO T amc Ve |4 (10 amng(ml+ime)
m m m
2T el o g (18)

wherea=A(r,z=0) andb=B(r,z=0). The vector potential aﬁq: 1+2\q

satisfies the Maxwell-Londons equation

It follows from Eq. (14) that a',‘nq:o. Note that Eq(16) for
the parallel component of the vector potenﬂ%ﬂk does not

1 2mhnge
VX(VXA)== AN+ — CS Voed(z) contain any information about the SC film. This component
s corresponds to a magnetic field equal to zero outside the FM
+47VX[mé(z)]. (11  film. Therefore, it is not essential for our problem.

— ) ) The vortex part of the vector potentiAl,, also does not
Here A =\{/d; is the effective screening length for the SC contain az component, since the supercurrents flow in the

film, and\_ is the London penetration depth. plane. The vortex-induced vector potential is
According to our general arguments, the term propor- o
tional to V¢ in Eq. (11) describes vortices. A plane vortex 2i (X 2)F(Qq)
characterized by its vorticitg and by position of its center vk:kz— (19
X . (1+2)\q)

on the plane, contributes a singular term ¢, _

whereF(q)==x;€e'9""i is the vortex form factor, the index
ZX(r—rg) labels the vortices, and are coordinates of the vortex cen-
VSDo(f'ro):qu (12)  ters. The Fourier transform of the vortex-induced vector po-
—lo

tential at the surface of the SC film, reads

_igo(qx2)F(q)
&9~ g1+ 20q)
dk

o 1+ 2K\ . We express energyl0) in terms of the fields and vector-

(13 potential Fourier transforms separating the purely magnetic,
purely vortex, and interaction parts:

Different vortices contribute independently into the vector

potential and the magnetic field. In the limit of zero film H=H,+HntHp,. (21

thickness the usual Coulomb gaugeAliv0 leads to a strong  The vortex energyH, is the same as it would be in the

singularity in the vector potential. Therefore, it is reasonableghsence of the FM film:

to apply another gaugé\,=0. The calculations become

and generates a standard vortex vector potential:
(20)

Ao(r—re,2)=5—

Qo 2X(r—rp) fmh(klr—rol)e-“'
X
27 |r—ry

simple in a Fourier representation. Following the prescrip- ngh? 2m d?q

tions elaborated upon in Sec. Il, we present the Fourier trans- Ho=3m f V‘P—q'(V(Pq_ dTauq) o2’ (22)

form of the vector potential, as a sumA, =A + A, of s 0 (2m)

independent contributions from magnetization and vorticesHowever, the magnetic enerdy,,,

The equation for the magnetic part of the vector-potential )

reads oo Ef L d7 23
m 2 T4 o 2

k(k-Amk)—szmkz%—4wikx mqe*%,  (14)  contains the screened magnetic fibldind therefore differs
from its value in the absence of the SC film, but does not

whereq is the projection of the wave vectironto the plane depend on the vortex positions. The interaction energy reads

of the films: k=k,z+q. An arbitrary vector fieldV, in the nie d2q
wave-vector space can be fixed by its coordinates in a local Hp=— 4rsn cf (qu)_q.amq—2
frame of reference formed by the vectars|,zx q: s (2m)
.- .. 1 d*q
V= §z+v||‘(q+vﬁ(z><q). (15 - —J M_q-byg - (24)
2 (2m)
Solutions of Eq.(14) are readily formulated in terms of Note that only the form factdf(q) bears information about

these coordinates: the vortex arrangement.

014414-3



ERDIN, KAYALI, LYUKSYUTOV, AND POKROVSKY PHYSICAL REVIEW B 66, 014414 (2002

We illustrate how important the omitted surface term can=mzs(R—r) §(z—d), whereo(x) is a step function equal

be on the example of a homogeneous perpendicularly mago +1 at positive arguments and 0 at negative ones. The
netized FM film interacting with a single vortex in the SC yector potential and magnetic field induced by the dot in the
film. Lyuksyutov and PokrovsKyshowed that the energy of presence of the SC film can be found by using E4g) and

this system i, =¢e,— Mgy, Whereeg,, is the energy of the (18). The Fourier component of magnetization necessary for
vortex in the absence of magnetic film,is the magnetiza- this calculation is

tion per unit area of the FM film ang,=hc/2e is the mag-

netic flux quantum. The term m¢y is the gain of energy of m :227'”” RJ (qR) ek (25)

a magnetic fim in the magnetic field generated by the vortex. k 19 '

Let us analyze how this result is derived from the previously . . :
described general formalism. The vortex endiy. (22)] is vr\:hereJl(x) is thg Blesst(ajl f.UHCtIOI’]. The Fourier transform of
just equal toe, . The purely magnetic terrfEq. (23)] does the vector potential reads:

not change in the presence of the vortex and is inessential.

H 2
The first term in the interaction ener@i¢q. (24)] is equal to AL .=— w
zero since the infinite magnetic film does not generate a k?
magnetic field outside itself. The second term of this energy
is equal to— me¢p/2. But this is only a half of the energy gain % | e—ad 2qM +(efkd—gad) | (26)
we discussed above. The second half of this gain is delivered 1+2ga

by the surface term. Indeed, it is equal to Though the difference in the round brackets in B§) looks

to be always smal(we recall thatd must be put zero in the
(mrxz)-Arde=—(1/2)m % A-dr final answey, we cannot neglect it since it implies a finite,

not small, discontinuity in the parallel component of mag-
netic field at the two films faces. From E@Q6) we immedi-
ately find the Fourier transforms of the magnetic field com-

Erdin et al. argued that, after proliferation of vortices due to PONents:
the instability, periodic stripe domains of opposite magneti- 7 ol L oAl
zation and vorticity occur in the bilayét.The periodic sys- k= 10A M Bane= ~ KA @7
tem is neutral on average. This means that the number ¢fn important component of calculations is the Fourier trans-
vortices in it is equal to the number of antivortices. Then theform of the vector potential at the superconductor surface:
surface integral over two remote lines parallel to the stripes

is proportional to the linear size of the system, since the L i8m AmR
magnetization and vector potential are periodic functions of 8mg =~ 1+2g\ Ji(aR).
coordinates and neither grows. Thus the surface integral can i ad

be neglected in comparison to the total energy obviously" the last equation we have replaced by 1.
proportional to the film area. Thus the energy of a single The inverse Fourier transformation of E427) and (26)

vortex in the neutral system ?svzsv—mqsolz. gives a magnetic field in real space,

2m

(1/2) lim f

r—wd0

(28)

=J,(qR)J,(qr)e 9
IV. MAGNETIC DOTS B%(F,Z)=47T>\mRJ 1(GR)Jolar) g’dqg, (29
. 0 1+2gA

In this section we consider the ground state of a SC film w
with a circular very thin FM dot grown upon it. The magne- B,(r,z)=—2mm Rf Jl(qR)Jl(qr)e’qM
tization is assumed to be fixed, homogeneous inside the dot, 0

and to be directed either perpendicular or parallel to the SC 20\

film. The problems we solve ar@) at what conditions vor- X msgr(z)Jrsgr(z—d)—sgr(z) qdq,
tices appear in the ground staté) where they appear, and q

(iii ) what the magnetic fields and currents in these states are. (30

As in Sec. Ill, we assume the SC film to be very thin, plane\/vhere sgnf) is the function equal to the sign of its argu-
and infinite in lateral directions. Since the magnetization is 9 q Y 9

r ; At — —
confined within the finite dot, no integrals over infinitely ment. Note thaB,, ha§ discontinuities m_(.) andz=d du_e
remote surfaces or contours arise. to surface currents in the SC and FM films, respectively,

whereas the normal componesf, is continuous.

The symmetry arguments imply that a vortex, if it ap-
pears, must be located at the center of the dot. Indeed, for

Let both SC and FM films be infinitely thin, and place R>\, an analytical calculation shows that the central posi-
them at the heights3=0 andz=d, respectively. The SC film tion of the vortex provides a minimal energy. We have
is infinite in lateral directions, while the FM film is finite and checked numerically that the central position is always en-
has a shape of regular circle with the radRinagnetic dot ergy favorable for one vortex. This fact is not trivial since the
The 2d magnetization of the magnetic dot im(r) magnetic field of the dot is stronger near its boundary, and a

A. Perpendicular magnetization
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0.0004 T T T T 8 :
(R
no vortex Py 1 vortex
------------ with vortex 7t [ e 2 vortices
Loy ---- 3 vortices

0.0002 | 7 6T
5|
B " “““““““ | m¢0/8V 4

-0.0002

3
-0.0004 R/A

10 15 20 25 30
/A FIG. 2. Phase diagram of vortices induced by a magnetic dot.
FIG. 1. Magnetic field of the dot with and without a vortex for The lines correspond to the appearances of one, two, and three

R/N=5 and ¢o/87m’mR=0.05. vortices, respectively.

violation of symmetry could be naively expected. However, WNET€ &, = &olN(\/¢) is thez energy of the vortex without

the gain of energy due to interaction of the magnetic fieldM@gnetic dotgo=¢o/(167°\); e, is the energy of inter-

generated by the vortex with magnetization decreases whe#ftion between the vortex and the magnetic dot given by Eq.

the vortex approaches the boundary. (24). The direct substltuu_on of the vector-potental, magnetic
Another interesting problem is the sign of the perpendicufield and the phase gradiefstee Eqs(28) and (29)] into the

lar component of the magnetic field. The vector potential€quation for energy24) leads to the following result:

generated by a vortex is given by E@9). The perpendicular

component of magnetic field generated by the vortex is Emy= — md)oRJWW- (33)
’ q
L, bo [=Jolar)e 9 g 5y  The vortex appears whe turns into zero. This criterion
v"27)y 1+2Aq ada. 3D determines a curve in the plane of two dimensionless vari-

ablesR/N and m¢q/e,. This critical curve separating re-

A numerical calculation based on Eq&9) and (31) shows gimes wiFh and without vortices is depicted in Fig. 2. The
that, in the presence of a vortex centered a0, B, on the asymptotic O.fsmv for large and small values &/ can be
SC film (z=0) changes sign at sonme>R (see Fig. 1, but found analytically:

it is negative everywhere at>R in the absence of the vor- R

tex. The physical explanation for this fact is as follows. The Emy™~ —Mdyg (—>1),

dot itself is an ensemble of parallel magnetic dipoles. Each A

dipole generates a magnetic field, whasmmponent on the

plane passing through the dot has a sign opposite to that of e ~ —m¢05 (E<1)_

the dipolar moment. However, the field exactly over and un- m 2\

A
dgr the dipole has the same sign as the dipole and is Strong‘?’hus, asymptotically, the curv&=0 turns into a horizontal
ks)mtgtl;lar. Jhe ft'ﬁlds from _d|ffear:|gt (_?_lﬁolgsccompe:etr aI(I;Q,t straight linemg¢g/e,=1 at largeR/N and logarithmically
ut they have the same signrat k. The St current tends 1o - yiqi4 e hyperbolarGég/e,)(R/N)=2 at small ratioR/\.
screen the magnetic field of the magnetization and to have an Upon a further increase of eitheng,/e, or R/\, the
v )

opposite sign. The field generated by a vortex at large diséecond vortex becomes energy favorable. Due to symmetr
tances decays slower than the screened dipolar fietd ¢&/ 9y i y Y,

5 . . : N the centers of the two vortices are located on a straight line
1/r®). Thus the sign 0B, is opposite to the magnetization at ;,1ecting the vortices with the center of the dot at equal
small values of (but larger tharR) and positive at large. igiances from the center. The energy of the two-vortex con-
The measurement of the magnetic field near the film may,, ation can be calculated by the same method. Curve 2 in
serve as a diagnostic tool to detect a SC vortex bour_1d by Rig. 2 corresponds to this second phase transition. The oc-
dot. To our knowledge, so far there has been no experimenta{, rence of two vortices can be experimentally detected as

me%s],urement offtl?:s effect. in th ¢ the violation of circular symmetry of the field. In principle
e energy of the system In the presence of a vortex Cafq o exists an infinite series of such transitions. Here we

be calculated using Eq&21)—(24). The appearance of a vor- jinit o rselves to the first three, leaving a detailed analysis

tex at the center of the dot changes the energy by the amoupj, 5 senarate paper. The role of configurations with several

vortices confined within the dot region and antivortices out-
A=eg,tem,, (32  side is not yet clear.
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B. Parallel magnetization 60

Next we consider an infinitely thin circular magnetic dot
whose magnetizatioM is directed in the plane and is ho-
mogeneous inside the dot. An explicit analytical expression
for M reads 0|

M=mg8(R—p)8(2)X, (34  moge, 3

whereR is the radius of the dotn, is the magnetization per

unit area, andx is the unit vector along the axis. The
Fourier transform of the magnetization is

J1(qR) .
X.

(39

M= 27mgR

. . R/
The Fourier transform for the vector potential generated by

the dot in the presence of a magnetic film takes the form FIG. 3. Phase diagram for vortx-antivortx pair induced by the
magnetic dot with in-plane magnetization.
A OR

Ami=xe K2+ o2 Ji(gR)cod ¢q) traction of the vortex and antivortex to the magnetic dot. The

z critical values ofmeg/ey seems to be numerically large
ik ek e—ud even atR/A~1. This is a consequence of the comparatively
— ) . (36) ineffective interaction of in-plane magnetization with the

q 1+2N vortex.

Let a vortex-antivortex pair occur with the centers of the

vortex and antivortex located at=+py and Xx=—p,, re- V. CONCLUSION

jv%e?i%ely' Employing Eqs21)~(24) to calculate the energy, In conclusion, we presented a general formalism for the
interaction between magnetic textures and superconductors

A »Jo(20po) in the London approximation. The problem is formulated as

E= 280|H<E) —4deg f qu a variational principle. The variational function@nergy is
0 q an integral over regions occupied either by a magnet or by a
»J,(qR)J1(0po) superconductor. It allows us to find positions of vortices and
—2mo¢oRf0 qu-ﬁ- Eo, (37) magnetization directly.

As applications, we have shown that vortices in supercon-
whereE, is the dot self-energy. In a numerical analysis, weducting films can be generated by magnetic dots normal to
take A/ £=100. the film magnetization. We have found phase-transition

Our numerical calculations indicate that the equilibriumCuUrves separating the state without vortices from the state
value of p, is equal toR. The vortex-antivortex creation With one vortex, and the latter from the state with two vor-

changes the energy of the system by tices. In the case of one vortex under a dot we have shown
that the perpendicular component of the magnetic field
A =Jo(2qR) changes sign at some distance from the dot. This fact can be

A=2¢gIn| —480?\J T oy 9d used for diagnostics of the vortex generation.
¢ 0 1+2)\q . . . . .

Superconducting vortices together with antivortices ap-

=J,(qR)J1(qR) pear if the dot magnetization is parallel to the film. We have
—2m¢oRfo 1+—2)\qu- (38)  demonstrated that the magnetic dot size and its magnetiza-

tion control the vortex generation and further transitions at
The instability of the vortex-antivortex appearance developgvhich two or more vortices appear. The phase diagram
whenA changes sign. The critical curve=0 in the plane of ~ reached for one dot implies even more complicated phase
dimensionless variablasg, /e, andR/\ is plotted numeri-  diagrams for arrays of dots.

cally in Fig. 3. In a region below this curve the creation of a

vortex-antivortex pair is energy unfavorable, while in the

region above the curve it is allowed. The phase diagram
suggests that the smaller the radR®f the dot, the larger This work was supported by the NSF under Grant Nos.
the value of m¢g/e, necessary to create the vortex- DMR 0103455 and DMR 0072115, and by the DOE under
antivortex pair. At large values & andma¢y=¢(, the vortex  Grant No. DE-FG03-96ER45598. It is our pleasure to ac-
is separated by a large distance from the antivortex. There&knowledge discussions with D. G. Naugle, G. W. Crabtree, I.
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