272 research outputs found

    Noise and thermal stability of vibrating micro-gyrometers preamplifiers

    Get PDF
    The preamplifier is a critical component of gyrometer's electronics. Indeed the resolution of the sensor is limited by its signal to noise ratio, and the gyrometer's thermal stability is limited by its gain drift. In this paper, five different kinds of preamplifiers are presented and compared. Finally, the design of an integrated preamplifier is shown in order to increase the gain stability while reducing its noise and size.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    On a graph-theoretical model for cyclic register allocation

    Get PDF
    AbstractIn the process of compiling a computer programme, we consider the problem of allocating variables to registers within a loop. It can be formulated as a coloring problem in a circular arc graph (intersection graph of a family F of intervals on a circle). We consider the meeting graph of F introduced by Eisenbeis, Lelait and Marmol. Proceedings of the Fifth Workshop on Compilers for Parallel Computers, Malaga, June 1995, pp. 502–515. Characterizations of meeting graphs are developed and their basic properties are derived with graph theoretical arguments.Furthermore some properties of the chromatic number for periodic circular arc graphs are derived

    Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination.

    Get PDF
    Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination

    The chemistry of branched condensed phosphates.

    Get PDF
    Condensed phosphates may exist as linear, cyclic or branched structures. Due to their important role in nature, linear polyphosphates have been well studied. In contrast, branched phosphates (ultraphosphates) remain largely uncharacterised, because they were already described in 1950 as exceedingly unstable in the presence of water, epitomized in the antibranching-rule. This rule lacks experimental backup, since, to the best of our knowledge, no rational synthesis of defined ultraphosphates is known. Consequently, detailed studies of their chemical properties, reactivity and potential biological relevance remain elusive. Here, we introduce a general synthesis of monodisperse ultraphosphates. Hydrolysis half-lives up to days call the antibranching-rule into question. We provide evidence for the interaction of an enzyme with ultraphosphates and discover a rearrangement linearizing the branched structure. Moreover, ultraphosphate can phosphorylate nucleophiles such as amino acids and nucleosides with implications for prebiotic chemistry. Our results provide an entry point into the uncharted territory of branched condensed phosphates

    Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica.

    Get PDF
    Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Modulation of a protein free-energy landscape by circular permutation

    Get PDF
    Circular permutations usually retain the native structure and function of a protein while inevitably perturb its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, while subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, where one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild-type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed
    corecore