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The chemistry of branched condensed phosphates
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Condensed phosphates may exist as linear, cyclic or branched structures. Due to their

important role in nature, linear polyphosphates have been well studied. In contrast, branched

phosphates (ultraphosphates) remain largely uncharacterised, because they were already

described in 1950 as exceedingly unstable in the presence of water, epitomized in the

antibranching-rule. This rule lacks experimental backup, since, to the best of our knowledge,

no rational synthesis of defined ultraphosphates is known. Consequently, detailed studies of

their chemical properties, reactivity and potential biological relevance remain elusive. Here,

we introduce a general synthesis of monodisperse ultraphosphates. Hydrolysis half-lives up

to days call the antibranching-rule into question. We provide evidence for the interaction of

an enzyme with ultraphosphates and discover a rearrangement linearizing the branched

structure. Moreover, ultraphosphate can phosphorylate nucleophiles such as amino acids and

nucleosides with implications for prebiotic chemistry. Our results provide an entry point into

the uncharted territory of branched condensed phosphates.
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Polyphosphates (polyP) are polymers of orthophosphate
linked by phosphoanhydride bonds. They are ubiquitous in
living organisms with numerous biological functions1.

PolyP may exist in three principally different structures (see
Fig. 1a): linear, cyclic (metaphosphates) or branched
(ultraphosphates)2. Cellular polyP are now defined as exclusively
linear polymers1, 3–5. This paradigm evolved, despite early reports
on the presence of metaphosphates in cellular extracts6–8 and was
recently called into question by 31P solid-state NMR data from
whole Xanthobacter autotrophicus9. There have only been scat-
tered comments on ultraphosphates in biology3, 10. These, in turn,
dismiss the occurrence of ultraphosphates by referring to the
antibranching-rule, which was coined in 1950 and has persisted
since then11–15. Some work has been done on vitreous and
crystalline ultraphosphates16–22 owing to applications as laser
materials (see Fig. 1b)11, 23. Yet, studies on monodisperse ultra-
phosphates are limited. In the 1970s, Glonek reported cyclic
ultraphosphate structures from condensations of ortho- or
metaphosphates (see Fig. 1c)24–28. The ultraphosphates could
neither be obtained in pure form nor isolated and in part lack
unambiguous analytical proof. The addition of water resulted in
the instantaneous hydrolysis of the branches24.

In recent years, branched oligophosphates caught attention
again: cyclic ultraphosphates like 11 with modifications on the
terminal phosphate can now be obtained and applied in the
syntheses of linear nucleoside, dinucleoside and inorganic
polyP29–33. Cummins et al. synthesised 7 as its [PPN] (bis(-
triphenylphosphine)iminium) salt, which allowed the isolation of
the product34. Application of 7 was demonstrated in the tetra-
phosphorylation of nucleotides and enabled the synthesis of
another ultraphosphate species containing four phosphates in the
cyclic subunit35. Although cyclic ultraphosphates have thus
recently become accessible, there is no synthesis of ultrapho-
sphates available that are devoid of cyclic substructures and
therefore are true constitutional isomers of linear polyP36. This
fundamental type of condensed phosphates remained unstudied.

Here, we report the synthesis of non-cyclic ultraphosphates
using phosphoramidite chemistry. This approach provides access
to both symmetrically modified ultraphosphates containing three
equal modifications on each terminal phosphate, including the
smallest possible unmodified ultraphosphate uP4 (2) as well as
unsymmetrical analogues containing two different residues. The
synthetic approach enables the generation of thio- and seleno-
ultraphosphates. To interrogate the antibranching-rule, we report
hydrolysis studies including enzymatic degradation. Furthermore,
we show the phosphorylation of nucleosides with inorganic
ultraphosphate with implications for prebiotic chemistry (see
Fig. 1d). We also study the reactivity of modified ultraphosphates
in organic solvent by using a combination of 31P-NMR and
capillary electrophoresis mass spectrometry (CE-MS) and dis-
cover an ultraphosphate rearrangement, which we name the
phosphate walk.

Results
Symmetrical ultraphosphates. Phosphordiamidites are used in
linear polyP syntheses by twofold activation and reaction with
(modified) phosphates37. A phosphortriamidite should therefore
enable threefold activation and reaction with three phosphates to
produce a mixed P(III)-P(V)-anhydride intermediate 18 (here-
after, called ultraphosphite, Fig. 2a), which can further be oxi-
dised resulting in an ultraphosphate (12).

Initially, the reaction of three equivalents of tetrabutylammo-
nium (TBA) phenyl phosphate with tris(diethylamino)phosphine
(16) and ethylthiotetrazole (ETT) was studied: 31P{1H}-NMR of
the mixture showed consumption of 16 within a few minutes,

giving rise to the ultraphosphite intermediate. The absence of
peak splitting due to homonuclear P-P coupling for this mixed
P(III)-P(V)-anhydride is in accordance with earlier observations
for P-amidite couplings37. Oxidation with mCPBA gave phenyl-
modified ultraphosphate 20, which was isolated by precipitation
with Et2O (71% yield, 78% purity, measured by 31P{1H}-NMR).
As decomposition products, diphenyl triphosphate (10%) and
phenyl phosphate (10%) were detected. The central ultrapho-
sphate signal, now showing the expected multiplicity (quartet)
with a chemical shift of ca. δ=−35 ppm, was detected in water.
This finding is in sharp contrast to the antibranching-rule,
claiming the instantaneous hydrolysis of ultraphosphates3, 10, 24.
Purification was possible in aqueous buffer (NH4HCO3) using
strong anion exchange chromatography (SAX) and 31P{1H}-
NMR analysis of fractions showed pure 20 in solution.
Lyophilization resulted in significant decomposition. We also
studied NaClO4 or LiCl solutions as eluents in SAX and
attempted to isolate the product by precipitation from acetone32.
Although we were unable to isolate trisphenyl uP4 20 using this
procedure, trisadenosine ultraphosphate (21) precipitated and
afforded the product in 55% yield. 31P{1H}-NMR of the
precipitate showed pure ultraphosphate, but after drying,
decomposition (>15%) was detected.

Next, we evaluated the scope of ultraphosphate synthesis (see
Fig. 2b) by changing modifications on the terminating phos-
phates. Since not all products precipitated readily, reaction yields
as derived for 21 cannot be given and Fig. 2b lists the purities of
crude products according to 31P{1H}-NMR. Alkyne modified
ultraphosphates (24 and 25) were readily accessible. Efforts
towards the synthesis of amino-acid- and carbohydrate-modified
ultraphosphates using O-phospho-L-tyrosine or α-D-glucose-1-
phosphate resulted in side-reactions of the phosphoramidite with
the amine or the primary alcohol, respectively. Application of
Fmoc-O-phospho-L-tyrosine followed by deprotection of the
amine gave access to amino-acid modified ultraphosphate 27.
The use of D-glucose-6-phosphate enabled access to a
carbohydrate-containing ultraphosphate 28. Thiamine-derived
ultraphosphate 29 could be obtained from the tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate salt of thiamine phosphate.
Modification of the oxidation (S8 or KSeCN) facilitated entry into
thio- (in green) and seleno- (23) ultraphosphates.

Unmodified and unsymmetrical ultraphosphates. We envi-
sioned the synthesis of inorganic ultraphosphate uP4 (2) as the
defining minimal unit of this substance class. Reactions of
phosphoric acid with 16 were unsuccessful thus requiring pro-
tected precursors for 2. Different cleavage strategies for the pro-
tected phosphates were considered, including hydrogenolytic
(30), enzymatic (31, discussed later), phototriggered (32–36) and
basic (37) deprotection (see Fig. 2b). We found that (9H-fluor-
enyl-9-yl)methyl (Fm) dihydrogen phosphate was readily
accessible38 and that the corresponding ultraphosphate 37 could
be synthesised under ambient conditions. 37 could also be stored
indefinitely in solution at −20 °C after purification, enabling
screening of several bases for deprotection. Only DBU enabled
deprotection to 37, but precipitation of uP4 2 resulted in
decomposition.

Unsymmetrically modified ultraphosphates were accessible by
orthogonal activation strategies using chlorophosphoramidites
(39 or 41, see Fig. 3a). Although over-reaction in the first and
unselective phosphate exchange in the second step was observed,
a series of unsymmetrical ultraphosphates were obtained after
purification. Fm-modified structures further allowed deprotection
by the addition of DBU to yield twofold or singly modified
ultraphosphates (50–54, see Fig. 3c). The number of
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Fig. 1 Previous work on cyclic ultraphosphates and non-cyclic ultraphosphates in this work with implications for prebiotic chemistry. a Types of
condensed phosphates and their chemical shift in 31P{1H}-NMR. b General synthesis protocol for polydisperse ultraphosphates and crystal structure of
NdP5O14

61. c Monodisperse ultraphosphates detected by Glonek in the condensation reactions of orthophosphoric acid or metaphosphates using
carbodiimides or trichloroacetonitrile24–28. The structures in dashed boxes were further described in publications by Klein62, Taylor29, Jessen31, 32 and
Cummins33. d General structures of ultraphosphates in this work and suggestion for prebiotically plausible phosphorylation reactions using
ultraphosphates: uP4 (2) was used as a model substrate for polydisperse ultraphosphates arising from reactions of P4O10 in the presence of water59. The
prebiotic phosphate cycle including phosphorus pentoxide from volcanic activity has already been proposed and meets the challenge of making phosphate
available from low-solubility minerals56–58, 63.
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Fig. 2 Symmetrical ultraphosphates. a Synthesis of ultraphosphates by threefold coupling of phosphates with tris(diethylamino)phosphine 16 and
subsequent oxidation. 31P{1H}-NMR spectra of the intermediary ultraphosphite 19 and the ultraphosphate 21 after oxidation and purification for
R= adenosine. b Synthetic scope of the synthesis of symmetrically modified ultraphosphates and modification of the oxidation step to yield thio- and
seleno analogues. The purity of the crude products is given in percent according to the 31P{1H}-NMR spectra. Yields were not determined due to uncertain
quantities of counterions but the respective crude masses are reported in the supporting information along with the spectra.
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modifications influenced the stability of the ultraphosphate
towards hydrolysis, showing faster decomposition for twofold
modified structures. For example, 54 was completely hydrolysed
in the deprotection mixture (5% DBU in water, pH 13.9) within
30 min while 52 had a half-life of 180 min. Copper-catalysed click
reactions on 49 were performed with biotin and fluorescein-
conjugates and allowed the preservation of the ultraphosphate
(Fig. 3d).

Salt metatheses and crystallisation. To obtain a single crystal of
an ultraphosphate, we examined salt metatheses reactions to yield
[PPN] salts, as [PPN] is well-known for its high crystallinity and
its capability to stabilise anions39. We developed a method to
isolate the ultraphosphate [PPN] salts from fractions after SAX
purification (Supplementary Fig. 2) and found that they can be
dried and stored indefinitely, in contrast to non-[PPN] salts. Only
uP4 [PPN] decomposed as soon as residual water was removed.

Although no crystals of sufficient quality for crystal structure
analysis could be obtained from the [PPN] salts, it was found that
Fm-protected 37 can be salted out from solutions after reversed-
phase purification (55% water, 35% MeCN, 10% TEAA (100 mM,
pH 7.0)) by addition of NaCl and that these conditions supported
the formation of single-crystals. X-ray diffraction studies
established the identity of 37 (Fig. 2). The packing along the
a-axis (Supplementary Fig. 3) shows that the ultraphosphate is
arranged along a chain of water-bridged sodium cations to form
distinct layers where hydro- and lipophilic interactions are
maximised. We attribute the increased stability of 37 compared to
other symmetrically modified ultraphosphates to a steric shield-
ing of the ultraphosphate moiety. Accordingly, the comparably
lower stability of singly or twofold modified ultraphosphates can
be explained. However, as a counter-effect, the higher negative
charge enables longer half-lives of singly compared with twofold
modified structures. Although [PPN] salts are stable storage
forms for ultraphosphates, their insolubility in water can be
disadvantageous. The metathesis to water-soluble sodium salts

was possible using NaOTf. Only for uP4, the salt metathesis was
unsuccessful and led to the formation of inorganic mono- and
triphosphate. Unexpectedly, also pyro- (14%) and linear tetra-
phosphate (12%) were detected.

Stability of ultraphosphates in water. The antibranching-rule
describes ultraphosphates as exceedingly unstable in the presence
of water12, 13. Our observations, however, revealed significant
hydrolytic stability for short-chain ultraphosphates expressed in
half-lives ranging from several hours to days. The decomposition
of uP4 and trisadenosine uP4 21 was tracked by 31P{1H}-NMR at
different pH values and in the presence of different cations (see
Fig. 4a and Supplementary Fig. 4). There is a high pH-
dependency on the decomposition rates, with longer half-lives
obtained with increasing pH values. In the presence of Mg2+, the
decay was about twice as fast, and Ca2+ accelerated the decay
even further. In contrast, monovalent cations had only little
effect.

The stability of ultraphosphates suffices to subject them to
polyacrylamide gel electrophoresis on dense gels (PAGE;
Supplementary Fig. 5 and Supplementary Fig. 6) without
significant decomposition followed by staining with toluidine
blue40. Such separations take several hours in aqueous buffer.
Threefold modified ultraphosphates gave clear bands without any
observed decay and even uP4 could be analysed by PAGE,
pointing towards a possible analytical approach to detect
ultraphosphates in biological samples. Singly or twofold modified
structures 52 and 54 decomposed under these conditions.

Enzymatic digestion of ultraphosphates. Ultraphosphates have
not been reported to occur in biological systems41. Since polyP
extraction protocols usually include acidic conditions, nucleo-
philic reagents, divalent cations and drying—all of which accel-
erate ultraphosphate decomposition—one would not expect to
detect ultraphosphates. The publication by Hong provides evi-
dence for this case already for the more stable metaphosphates9.

Fig. 3 Unsymmetrical ultraphosphates. For the discussion of yields see Supplementary Methods 12.2. a Syntheses of threefold modified unsymmetrical
ultraphosphates using either a chloro phosphormono- or diamidite. b 31P{1H}-NMR spectrum of unsymmetrically modified ultraphosphate 46. c Twofold
and singly modified ultraphosphates by deprotection of Fm-modified, unsymmetrical ultraphosphates using DBU. d Application of click-chemistry on
ultraphosphate 49.
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In accordance, we could not find any ultraphosphate signal at ca.
δ=−35 ppm in 31P{1H}-NMR analyses of polyP extracts from
different yeast strains modified in their polyP metabolising
enzymes (the polyP overexpressor GPD-vtc5, the polyP devoid Δ
vtc4, and polyP accumulating Δ ppn1, ppn2, ppx1, that lack
phosphatases degrading polyP; Supplementary Fig. 7 and 8). We
hypothesised that in addition to chemical conditions, enzymes
might also degrade ultraphosphates, which would further

complicate strategies to extract them from biological sources. We
studied the enzymatic digest of ultraphosphates using alkaline
phosphatase (ALP). We initially examined the hydrolysis of para-
nitrophenylphosphate and its ultraphosphate 31. We synthesised
ultraphosphate 31 as its [PPN] salt and tracked the decomposi-
tion in the presence and absence of ALP by 31P{1H}-NMR
(Fig. 4b)42. 31 showed a half-life of t1/2= 159 min in the absence
of the enzyme, which was significantly reduced upon its addition

Fig. 4 Stability of ultraphosphates in aqueous media and enzymatic digestion. a Decomposition of trisadenosine ultraphosphate (21) and uP4 under
different pH values and in presence of 0.1 eq. of different cations. Half-lives were calculated assuming pseudo-first-order reaction kinetics. b Enzymatic
digestion of tris(para-nitrophenyl) ultraphosphate (31) by alkaline phosphatase (ALP) from bovine intestinal mucosa. Kinetics were recorded using
31P{1H}-NMR and the [PPN] signal was used as an internal standard. The results are means ± standard deviation from experiments performed in triplicates.
Half-lives were calculated assuming pseudo-first-order reaction kinetics. I, 31 in the presence (green) and absence (black) of ALP. II, 31 with 20mM EDTA
in the presence (blue) and absence (black) of ALP. III, 31 in the presence (red) and absence (black) of heat-inactivated ALP. c Decomposition of tris(para-
nitrobenzyl phosphonyl) ultraphosphate (63).
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(t1/2= 29 min). We were interested as to whether the ultrapho-
sphate 31 binds to the active site or whether surface effects are
responsible for the accelerated hydrolysis. We measured addi-
tional kinetics using either heat-denatured enzyme or enzyme-
treated with ethylenediaminetetraacetic acid (EDTA) to remove
Mg2+ and Zn2+ ions. The decay of 31 in presence of heat-
inactivated enzyme copies the kinetics of the blank. Only a low
residual hydrolytic activity in the presence of EDTA was found.
We conclude that ultraphosphate 31 binds to the active site and is
enzymatically digested, providing evidence for an
ultraphosphate–enzyme interaction. Similar results were obtained
for the adenosine-modified ultraphosphate 21 (Supplementary
Fig. 9). However, it was still unclear whether ALP first hydrolyses
the branching point of ultraphosphates, or one of the three
phosphoester bonds (path A or B in Fig. 4b). The latter would
result in an unstable twofold modified ultraphosphate 60 that
would rapidly decay further. uP4 2 was enzymatically digested as
well (Supplementary Fig. 10), pointing towards the cleavage of the
anhydride bond. To further study the enzymatic digestion of
modified ultraphosphates, we envisioned the synthesis of the
nonhydrolyzable analogue 63 with a CH2-group as an oxygen
replacement, which the enzyme cannot cleave, whereas still being
capable of hydrolysing the central anhydrides (Fig. 4c). para-
Nitrobenzyl phosphonic acid was transformed to ultrapho-
sphonate 63. After oxidation, 31P{1H}-NMR suggested a clean
reaction to the product, but after precipitation, ultraphosphonate
63 was no longer present (Supplementary Fig. 11). We identified
the usual hydrolysis products 61 and 62 but also another product,
which was purified by AIEX chromatography and found to be a
linearised mixed tetraphosphonate/phosphate analogue 64. This
is reminiscent of the linear tetraphosphate we found for uP4 2
decomposition described earlier and pointed towards a rearran-
gement typical for ultraphosphates.

Ultraphosphates rearrange by phosphate walk. Apart from
linearised products such as P4 from uP4 [PPN] 2 and the
synthesis of an ultraphosphonate (63 and 64, Fig. 4c and Sup-
plementary Fig. 11), trisadenosine ultraphosphate [PPN] (21) also
showed another decay mechanism accompanying simple hydro-
lysis of the branching point after several days in DMF. Next to
AMP and Ap3A as expected products of hydrolysis, further sig-
nals were detected and 1H-31P-HMBC cross-peak analysis
revealed that internal phosphates must carry adenosine (Fig. 5a).
The mixture was analysed by CE-MS, which enabled the
separation of different components and determination of their
mass. We confirmed masses matching Ap2A, a threefold modified
triphosphate 65 as well as a threefold modified tetraphosphate 66.
Since 21 was analytically pure, a rearrangement must lead to
linearization of the ultraphosphate that walks into the line43,
which we dub the phosphate walk (Fig. 5b). We propose, that the
ultraphosphate linearises by an attack of one terminal phosphate
at another accompanied with the cleavage of either a phos-
phoanhydride or phosphoester bond. The latter would form a
cyclic ultraphosphate intermediate and requires a second
nucleophilic attack of the released alcoholate to form 66 as the
central intermediate of the mechanism. Depending on the
nucleophile (AMP or H2O) and the attacked phosphate of 66
(Fig. 5b), both the internally modified phosphate 65 and
Ap2A, as well as standard decomposition products, can be
explained.

Bisphenyladenosine (43) and trisbenzyl ultraphosphate (30)
[PPN] (Supplementary Fig. 12 and Supplementary Fig. 13) also
showed phosphate walk products. For 30, the rearrangement
could only be induced by heating to 80 °C.

Computation was invoked to corroborate the feasibility of the
internal phosphate walk mechanism. The electronic states and
chemical bonding of branched phosphates in phosphate glasses
have been discussed based on computational results for various
model clusters44. However, the history of mechanistic disputes
surrounding substitution reactions at phosphorous includes a
myriad of experimental results and ab initio computations45–47.
The energy of highly charged species, with variable counterions in
high vs moderate dielectrics involving hydrogen bond donors, are
sensitive to intricate changes in speciation, constitutional and
conformation isomerism, and explicit vs continuum environ-
mental effects47–49. Mechanistic computational studies involving
trimethyl ultraphosphate (67) at the B97D/Def2-TZVPD(water)
level of theory support the ultraphosphate 67 and linearised
product 69 having energies compatible with both species being
accessible under normal conditions. A cyclic intermediate 68
(Fig. 5c) was found that results formally from the loss of
methoxide and the formation of a six-membered ring by the
association of formally negative oxygen of one phosphate to the
phosphorous where methoxide is removed. These three states
(67–69) were the basic minima considered. The walk could occur
through this higher energy cyclic state that serves as a possible
bridge between branched and linear forms and has transition
states leading to the ring-formation and -opening. Alternatively,
the association could form a ring with a pentavalent phosphorous
atom (70); however, numerous attempts to identify such an
intermediate by DFT calculations were unsuccessful. Mono- and
dihydrates were considered, where the explicit waters were placed
in positions consistent with prevailing models47 bringing down
the relative activation energies. The data support a trend where
reaction in water coupled to specific acid catalysis would show
fast substitution rates. Considering effective molarities, relative
nucleophilicities and the high concentration of water in water
(55 M), hydrolysis as the dominant reaction path is not surprising.
Taken out of the context of water, the effective molarity of
internal nucleophile remains constant; the nucleophilic strength
of solvent is reduced and the concentration of solvent molecules
as nucleophiles in bulk solvent drops to on the order of 10 M50, 51.
All these factors presage parallel rates of acceleration in the
presence of acid but a product distribution in which internal
attack becomes competitive if not fully dominant. This shift in
product distribution opens the way for the phosphate walk. For
the ultraphosphonate analogue 63, however, the one-step
mechanism must be energetically favoured.

Reactivity of uP4 as phosphorylating agent. Ultraphosphates
could potentially serve as phosphorylating reagents if suitable
nucleophiles are present, as has been previously studied for poly-
and metaphosphates52–55. Earlier studies suggested the formation
of branched phosphates on primitive earth as partial hydrolysis
products of P4O10, which in turn can be volatilised from
magma7, 56–58. uP4 2 was used as a model substrate for polydisperse
ultraphosphates arising from P4O10 in the presence of water59 to
study the potential contribution of branched phosphates to pre-
biotic phosphorylation reactions (Fig. 6a and Supplementary
Fig. 15). Aliphatic nucleophiles were studied for general reactivity
patterns of ultraphosphates. Ethanolamine was used to screen the
required stoichiometry to favour the phosphorylation reaction over
simple hydrolysis by water. We observed monophosphorylation of
the amine moiety with a phosphorylation ratio of up to 85:15
(phosphorylated ethanolamine vs. orthophosphate as hydrolysis
product) with 3000 eq. ethanolamine. Decreasing ethanolamine
gave ratios of 70:30 for 500 eq. and 27:73 phosphorylated ethano-
lamine for 100 eq., respectively. For secondary amines and alcohols,
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Fig. 5 Rearrangement of ultraphosphates. a Analytical results for trisadenosine ultraphosphate (21) [PPN] salt after 14 days in DMF: 1H-31P-HMBC with
two cross-peaks for internally modified oligophosphates. CE-MS analysis of the product mixture and proposed structures 65 and 66 for the internally
modified compounds. b Phosphate walk rearrangement for trisadenosine ultraphosphate (21) and nucleophilic attack of the linearised product 66. c
Possible mechanistic pathways of the phosphate walk rearrangement for trimethyl ultraphosphate dihydrate (67). Mechanistic studies were carried out at
the B97D/Def2-TZVPD(water) level of theory; for details see Supplementary Note 9.2.
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we additionally detected a phosphoramidate arising from the
reaction of DBU — which was present due to the deprotection
conditions —with uP4. This side-reaction was avoided using
polymer-bound DBU for the deprotection, affording DBU free uP4
in 81% purity (see Supplementary Fig. 15). Interestingly, uP4 2 was
found to be less stable in the absence of DBU. Thus, further
experiments were performed with DBU in solution due to the better
repeatability. For different amino acids, the primary or secondary
amine and — if present — the alcohol or thiol moiety were
phosphorylated (Supplementary Fig. 15). For glycine, only 8%
phosphorylation of the amine was observed at pH 8.8 but the
adjustment to pH 13.0 increased the phosphorylation to 66%, in
accordance with the longer half-life of uP4 at higher pH (see
Fig. 4a). Although it is unclear whether this pH condition is rele-
vant to prebiotic chemistry60, the result still shows a general reac-
tivity trend. Freeze-drying experiments increased the
phosphorylation of glycine to its phosphoramidate to 52% at a pH
of ca. 9.

For all canonical (deoxy)nucleosides, even 10 eq. were sufficient
to detect phosphorylated nucleosides by CE-MS after freeze-drying.
For full consumption of uP4 2 in one single freeze-drying
experiment, 500 eq. were necessary. These conditions allowed
phosphorylation of up to 54%, whereas evaporation of solvent at
room temperature resulted in 33% nucleoside phosphorylation. The
product distribution was analysed by CE-MS, and spiking
experiments revealed product identities (Fig. 6b). We found
phosphorylation in the 5′- and also 2′- and 3′-positions. To rule
out phosphorylation arising from inorganic mono- and

triphosphate, these compounds were lyophilised with 3000 eq.
uridine, leading to no phosphorylation. Ultraphosphate 2 as a
model substrate—and by extension other branched polyP—may
thus have served as phosphate donors in prebiotic chemistry.

Life relies on condensed phosphates, but ultraphosphates as a
fundamental type and true constitutional isomers of the linear
polyP remained unstudied. In this study, we disclose the synthesis
of defined monodisperse ultraphosphates containing zero to three
modifications. For those short-chain ultraphosphates, we found
significant hydrolytic stability expressed in half-lives up to days,
which calls the antibranching-rule into question. We provide
evidence for the interaction of an enzyme with ultraphosphates
and describe the phosphate walk, which linearises branched
phosphates. Ultraphosphate was applied as a phosphorylating
reagent for nucleophiles such as amino acids and nucleosides with
implications for prebiotic chemistry. With synthetic access to this
class of molecules, the chemistry—and potential biology—of the
branched phosphates can finally be studied.

Methods
General procedure for the synthesis of ultraphosphates. In all, 3.0 eq. of a
monophosphate TBA salt and 3.0 eq. of an activator (ETT or DCI) were co-
evaporated using MeCN (3×) and afterwards dissolved in DMF. 1.0 eq. of P(NEt2)3
was added and stirred for 10 min. Upon completion of the coupling, 1.5 eq.
mCPBA (77%) was added at 0 °C and stirred for 10 min. The product was pre-
cipitated using Et2O, the suspension centrifuged and the pellet washed with Et2O.
Drying in vacuo gave the crude product as a mixed TBA/diethylammonium salt.
The ultraphosphate was purified by AIEX chromatography (Q Sepharose® Fast

Fig. 6 Phosphorylation of nucleosides by uP4 (2) and electropherograms of the CE-MS analysis. a Conditions and phosphorylation rates for the reaction
of nucleosides with uP4. If the pH of the nucleophile solution was adjusted, the applied base is indicated in brackets. Phosphorylation rates were calculated
without consideration of the phosphoramidate by-product arising from the reaction of DBU with uP4. b Electropherograms of the CE-MS analysis of the
product distribution. The positional isomers were determined by spiking experiments.
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Flow) or using a PuriFlash Column (30 µ C18 AQ; water, MeCN gradient (0–45%),
10% TEAA (100 mM, pH 7.0)).

General procedure for the salt exchange of ultraphosphates to [PPN] salts.
The crude ultraphosphate is either purified by anion exchange chromatography
using Q Sepharose® Fast Flow and a NaCl (1 M) gradient or by using a PuriFlash
Column (30 µ C18 AQ; water, MeCN gradient (0–45%), 10% TEAA (100 mM, pH
7.0)). Fractions containing ultraphosphate were analysed for their concentration by
addition of a defined volume of a PMe4Br solution in D2O (1 mg/ml) and 31P{1H}-
NMR. Fractions were combined and heated to 55 °C. [PPN]-Cl (2–3 eq.) was
dissolved in H2O (yielding ~2–5 mM solution) at 55 °C and added to the ultra-
phosphate solution. The precipitate was collected by centrifugation and washed
with warm water (~55 °C). The residue was dissolved in acetone, dried over
Na2SO4 and the solvent removed in vacuo.

Data availability
All data supporting the findings of this study are available in the article and
Supplementary Information file or from the corresponding author upon reasonable
request. The X-ray crystallography data have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under accession number CCDC: 2032762. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
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