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Abstract

In the process of compiling a computer programme, we consider the problem of allocating
variables to registers within a loop. It can be formulated as a coloring problem in a circular
arc graph (intersection graph of a family F of intervals on a circle). We consider the meeting
graph of F introduced by Eisenbeis, Lelait and Marmol. Proceedings of the Fifth Workshop on
Compilers for Parallel Computers, Malaga, June 1995, pp. 502–515. Characterizations of meeting
graphs are developed and their basic properties are derived with graph theoretical arguments.
Furthermore some properties of the chromatic number for periodic circular arc graphs are

derived. ? 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the process of compiling a computer programme, register allocation is an impor-
tant problem; basically it amounts to trying to keep as many variables as possible in
registers, thereby avoiding the need to introduce spill code; we shall concentrate on
loops which o�er instances where the process needs to be optimized.
For the allocation of variables to registers, graph coloring models provide a funda-

mental tool. Basically we may associate a node of a graph G to each variable occurring
in a programme; two nodes are linked if they correspond to variables which are simul-
taneously alive. Finding a minimum coloring of G corresponds to �nding the smallest
number of registers needed to store the variables. Various approaches have been de-
scribed in the literature. Our purpose in this note is to start from the representation in
terms of “meeting graph” introduced in [3] and to derive directly its properties from the
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structure of the graph. In this process we shall also generalize and hopefully simplify
some of the results given in [6]. Our work lies in the scope of periodic assignment in
periodic scheduling problems [5]. Assignment of periodic jobs to processors is formu-
lated in terms of graph coloring in [5]; collections of jobs with di�erent periods are
considered. Worst-case performance of some heuristics is also studied.
For a comprehensive bibliography on register allocation problems we refer the reader

to [6] which contains an extensive list of contributions in the area; all graph-theoretical
terms not de�ned here can be found in [1].
In this note, we concentrate on a graph-theoretical model designed for loop cyclic

register allocation. The motivations for dealing with this model are extensively dis-
cussed in [3,6]. Notice that we will exclusively consider the case of loops in a
programme; furthermore, in order to exploit the instruction-level parallelism of the
programmes and the performances of modern processors, we will have to consider that
some of the lifetimes of the variables may span more than one iteration; this is due to
loop software pipelining that make iterations overlap in time (see [6]).
As in [6] we will not consider the problem of loop scheduling so that in our model

the basic data will consist of a family F of circular intervals (intervals on a circle
which represents one iteration of the loop); as mentioned above these intervals may be
longer than the circumference of the circle (“they intersect themselves”) in case they
are associated to a variable whose lifetime exceeds the length of one iteration.
A classical model consists in taking the intersection graph G = (V; E) of F: each

interval in F is a node of G and we link two nodes in G if the corresponding intervals
have a nonempty intersection. (Notice that for intervals longer than one iteration, a loop
will be introduced on the corresponding node in G).
Such graphs are circular arc graphs; they have been extensively studied (see [4,8]).

Observe that �nding the chromatic number of general circular arc graphs is NP-complete,
see [4].
Assigning the variables to registers in such a way that no two variables simulta-

neously alive are assigned to the same register amounts to coloring the nodes of the
graph G representing F . The presence of loops in the graph however makes a color-
ing impossible for the corresponding nodes. This is one reason why loop unrolling is
introduced.
Given a family F of cyclic intervals and a positive integer k, we arrange k copies

of the family F along a circle whose circumference is k times the one of the original
circle. The intersection graph of this new family will be called a k-unrolling of G (or
of G(F)); it will be denoted by Gk(F) or simply Gk . Fig. 1 shows an example of
family F with a 2-unrolling of G; the underlying circle has been cut for simplifying
the representation.
Examples show that the chromatic number �(Gk(F)) does change when k increases;

the e�ect of loop unrolling on Gk(F) has thus been studied by various authors using
di�erent tools (see [6]).
If the nodes of G are a; b; : : : ; z, the nodes of Gk will be a1; : : : ; ak , b1; : : : ; bk ; : : :,

z1; : : : ; zk . We shall say that a q-coloring of Gk is cyclic if there exists a permutation
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Fig. 1. A 2-unrolling G2 of G. (a) The family F and the intersection graph G=G1. (b) Two copies of F
and the intersection graph G2.

’ of the colors in {1; : : : ; q} such that for each node ui the following holds:
if ui has color c; then ui+1 has color ’(c):

(Clearly the indices are taken modulo k between 1 and k):

The smallest q such that a graph Gk has a cyclic q-coloring is the cyclic chromatic
number of Gk ; it is denoted by �cyclic(Gk) while the usual chromatic number is �(Gk).
Clearly �(Gk)6�cyclic(Gk).
In the next sections we shall present the meeting graph introduced by Eisenbeis et

al. [3]; we will characterize meeting graphs, derive their properties by graph-theoretical
arguments and use them to generalize and simplify some results in loop cyclic register
allocation.

2. The meeting graph

We are given a family F of cyclic intervals (located on a circle of circumference p).
We may assume that p is integral and that all intervals in F are of the form [i; j[
where i; j are integers; notice that we may have in F intervals of length |j− i|¿p;
the endpoints i; j should thus be integers; they are taken modulo p between 1 and p.
The thickness of F at i, denoted by r(F; i) is the number of intervals in F which

contain a point i of the circle; an interval covering � times point i should be counted
� times.
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Fig. 2. A family F with the various graphs. (a) The family F. (b) The graph G. (c) The graph Ĝ. (d)
The split s(Ĝ).

We denote by r(F) the maximum of r(F; i) over all points i of the circle. It is
the thickness of F. Fig. 2a shows a family F of cyclic intervals with r(F) = 4:
As in [6] we will assume without loss of generality that the thickness at all points

i is constant (equal to r(F)): we may introduce unit intervals in F if needed.
Basically for the cyclic register allocation problem, the circle should be oriented

according to the time axis.
This suggests that a representation by an oriented graph would be more appropriate

than one using an unoriented graph, as for instance the circular arc graph.
We therefore de�ne a graph G representing F as follows: the nodes of G are the

integral points 1; 2; : : : ; p of the circle; each interval [i; j[ of F with length r is
associated with an arc (i; j) of length r.
For the family F of Fig. 2a, we have in Fig. 2b the graph G representing F.
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Proposition 2.1. For every node x of G; we have

d+G (x) = d
−
G (x)

(the number of arcs entering x is equal to the number of arcs going out of x).

This is an immediate consequence of the assumption of constant thickness of F.
We recall that a circuit in a graph G is Eulerian if it uses each arc of G exactly

once. It is a basic result of graph theory that such a circuit exists in G if and only if
G is connected and satis�es d+G (x) = d

−
G (x) for each node x (see [1]). Hence we can

state:

Proposition 2.2. Every connected component of G has a Eulerian circuit.

Proposition 2.3. In G every circuit has a length which is a multiple of p.

Again this follows directly from the construction of G from F: a circuit in G

corresponds to a sequence of intervals in F such that the endpoint of any interval
coincides with the initial point of the next one. Since all intervals are oriented according
to time, we may come back to the starting point only after having gone around the
circle (once or more).

Remark 2.1. Besides satisfying d+G (x)=d
−
G (x) for each node x, graph G does not have

any special structure. In fact for any graph G (with d+G (x) = d
−
G (x) for each node x)

we can associate a length l(x; y) to each arc (x; y) so that G corresponds to a family
of intervals on a circle.
This can be seen as follows: let x1; x2; : : : ; xn be the nodes of G; we may consider

that they are placed regularly in this order around a circle of circumference n. Examine
each arc (xi; xj): if i¡ j we give a length l(xi; xj) = j − i, otherwise (i¿j) we give
a length l(xi; xj) = n− j + i. Then G represents a family F of intervals obtained by
associating to each arc (xi; xj) of G an interval [i; j[ starting at xi.

A consequence of the above remark is that for constructing a Eulerian circuit in G

we cannot hope to have a special algorithm based on a speci�c structure of the graph.
We will have to apply any general algorithm for constructing a Eulerian circuit.
Now let us introduce the adjoint H (G) of a graph G as a graph obtained by as-

sociating a node u to every arc u = (x; y) of G. In H (G) nodes u and v are linked
by an arc (u; v) if they correspond to two arcs u= (x; y), v = (y; z) in G. H (G) is
sometimes called the directed line-graph of G. It appears in various applications (see
for instance [2]).
De�ne in a graph G=(V; U ) the neighborhoods N+(x)= {y ∈ V | (x; y) ∈ U} and

N−(x) = {y ∈ V | (y; x) ∈ U}. It is known that a graph G (without parallel arcs) is
an adjoint of some graph if and only if for any two nodes x; y N+(x) ∩ N+(y) 6= ∅
implies N+(x) = N+(y) (see [1]).
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This de�nes an equivalence relation ∼ on the node set V of an adjoint G: for
x; y ∈ V we have x ∼ y if and only if N+(x) = N+(y).
Now for any (oriented) graph G=(V; U ) we de�ne the split S(G) as follows: each

node x of G is replaced by two nodes x′; x′′ and each arc u=(x; y) of G is replaced
by an arc u∗ = (x′; y′′). So S(G) = (V ′; V ′′; U ∗) is a bipartite graph.
If H is the adjoint of a graph G, then S(H) is a union of node disjoint complete

bipartite graphs: for each class C(x) of the equivalence relation ∼ de�ned above, we
will have a complete bipartite graph on subsets {z′ ∈ V ′ | z ∈ C(x)} and {y′′ ∈ V ′′ |y ∈
N+(x)}.
One observes that the left sets (resp. right sets) of those bipartite graphs are pairwise

disjoint.
Having stated these preliminary de�nitions and observations, we may now return to

the family F of cyclic intervals and to the “meeting graphs”.
For F the meeting graph Ĝ(F) or simply Ĝ is obtained by introducing a node v̂

for each interval v = [i; j[ of F and we link nodes û and v̂ by an arc (û; v̂) if they
correspond to intervals u= [i; j[ and v= [j; k[ of F. The graph Ĝ associated to the
family F in Fig. 2a is given in Fig. 2c. Furthermore the split S(Ĝ) is shown in Fig.
2d.
We observe that Ĝ(F) = H (G), i.e., the meeting graph of F is the adjoint of the

graph G representing F.
As consequences of this observation, we can mention the following.

Proposition 2.4 (Lelait [6]). Every connected component of Ĝ has a Hamiltonian cir-
cuit.

This follows directly from Proposition 2.2 and from the fact that Ĝ is the adjoint of
G: a Eulerian circuit in G corresponds to a Hamiltonian circuit in Ĝ.
So for constructing a Hamiltonian circuit in a connected component of Ĝ we simply

have to construct a Eulerian circuit in a connected component I of G.
A simple such technique consists of choosing in I a node x as root and constructing

a spanning oriented tree T (arborescence) directed towards x. Then, starting from x,
one follows a path by choosing at each node an unused arc and by using the unique
arc of T leaving a node only when there is no other unused arc.
We shall now denote by Kp; q a complete bipartite graph with p (resp. q) nodes in

the left (resp. right) set.

Proposition 2.5. A graph S (without isolated nodes) is the split S(Ĝ) of a meeting
graph Ĝ if and only if it is a collection of node disjoint complete graphs Kna; na ;
Knb; nb ; : : : ; Knt ; nt .

Proof. Since Ĝ is the adjoint of some graph G, we know from the above remarks that
the split S(Ĝ) of Ĝ consists of node disjoint complete bipartite graphs.
Now, according to Proposition 2.1, G satis�es d+G (x) = d

−
G (x) for each node x.
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For each pair of arcs u=(z; x), v=(x; y) in G there will be in Ĝ=H (G) a pair of
nodes u; v with an arc (u; v) and in S(Ĝ) a pair of nodes u′; v′′ with an arc (u′; v′′).
So if d+G (x) = d

−
G (x) = s, then in S(Ĝ) every one of the s nodes u′ corresponding to

some arc u entering node x in G will be linked to the s nodes v′′ corresponding to
arcs v going out of x in G. This will give a complete graphs Ks; s.
Conversely, assume that we are given a collection K= (Kn1 ; n1 ; : : : ; Knd; nd) of com-

plete (oriented from left to right) bipartite graphs. We can construct a graph G such
that K=S(H (G)) as follows: we assume that the left nodes are labelled x1; : : : ; xn in
K and that the labels of the right nodes form an arbitrary permutation of x1; : : : ; xn.
To each Ki; i associate a node I in the graph G to be constructed. Examine consec-

utively each symbol xs: it occurs once in the left set of some graph, say, Kj; j, and
once in the right set of some graph, say, Kr; r
We associate to xs an arc xs = (L; J ). Since all bipartite graphs in K are of the

form Ki; i there will be the same number of arcs leaving and entering a node in G.
Clearly G has an adjoint H (G) whose split is K.

We have seen that every connected component of Ĝ has a Hamiltonian circuit. In
applications one needs simply to have a collection of node disjoint circuits covering all
nodes of Ĝ. It corresponds to cyclic r-colorings of some k-unrolling Gk . More precisely
each circuit C in Ĝ corresponds to a sequence of intervals which make �(C)=

∑
(w(x) :

x ∈ C)=p tours around the circle of circumference p, where w(x) is the length of
the interval of F represented by node x. This circuit de�nes a �(C)-coloring of the
corresponding nodes in a �(C)-unrolling of G.
For instance the circuit C2 = (e; c; b; a) in the decomposition given in Fig. 3a has

�(C2) = 9
3 = 3; going along C2 we give color i to the ith occurrence of each interval.

We do the same for C1 (with new colors) and we get the coloring of intervals shown
in Fig. 3b. Since �(C1) + �(C2) = 4= r, this will de�ne an r-coloring of a k-unrolling
of G with k = lcm (�(C1); �(C2)). Here lcm denotes the smallest common multiple.
The permutation ’ of colors associated to this cyclic 4-coloring is ’= (1) (2 3 4):

the intervals d and f get always color 1, while e; c; b; a get consecutively colors
2; 3 and 4.
Such a collection of circuits can be easily constructed by observing that it is simply

a perfect matching (i.e., a collection of node disjoint arcs meeting all nodes) in S(Ĝ).
Such a matching does exist since all bipartite graphs in S(Ĝ) are of the form Ks; s.
Fig. 3c shows a perfect matching in S(Ĝ); one can verify that it de�nes a collection
of three circuits in Ĝ.
Hence, we can state the following.

Proposition 2.6. There is a one-to-one correspondence between the perfect matchings
in S(Ĝ) and the collection of node disjoint circuits covering all nodes of Ĝ.

As a consequence, we may easily examine what happens when one wants to introduce
a new arc in a family C of node disjoint circuits covering all nodes of Ĝ; this will be
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Fig. 3. Circuits and cyclic colorings. (a) A decomposition of Ĝ of Fig. 2 into two circuits. (b) A cyclic
4-coloring of G3 associated to the decomposition in (a). (c) A perfect matching in S(Ĝ) corresponding to
another decomposition into circuits.

needed in exploration procedures for �nding a suitable cyclic r-coloring of Gk . Let M
be the perfect matching in S(Ĝ) corresponding to C. Suppose we want to introduce
an arc (a; b) of Ĝ into C. It corresponds to arc (a′; b′′) in S(Ĝ); let (a′; c′′) and
(d′; b′′) be the arcs of M adjacent to a′ and b′′ in S(Ĝ). These arcs are in the same
connected component Ki; i; so there is an arc (d′; c′′) in Ka; a; it corresponds to arc
(d; c) in Ĝ: so we may introduce (a; b) and (d; c) in C provided we remove (a; c)
and (d; b). This corresponds to the “dual chords” de�ned in [6].
In fact S(Ĝ) allows us to see directly what are the arcs which can be introduced

simultaneously into C; we shall say that they are compatible. So two arcs of Ĝ are
compatible if and only if they correspond to nonadjacent arcs in S(Ĝ).
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We can formalize this as follows:

Proposition 2.7. A collection of arcs of Ĝ are compatible if the corresponding arcs
in S(Ĝ) are nonadjacent.
In S(Ĝ) any set of nonadjacent arcs can be extended to a perfect matching.

This follows from the structure of S(Ĝ) described in Proposition 2.5. Any greedy
algorithm will thus provide a perfect matching in S(Ĝ).
We can take advantage of this observation when we will have to explore the set

of partitions of the node set of Ĝ into circuits C1; : : : ; Cn in order to �nd one with
a reasonably small D=lcm(�(C1); : : : ; �(Cn)). Finding the smallest D is NP-complete
(see [6]) so heuristics will have to be de�ned; Proposition 2.7 can thus be reformulated
as follows: any collection of node disjoint paths in Ĝ can be extended to a family of
node disjoint circuits covering all nodes of Ĝ.
We shall end this section with a simple observation related to connectivity of Ĝ and

a reformulation of the problem of �nding an r-coloring in a circular arc graph G.

Proposition 2.8. Ĝ(F) is connected if and only if for every nontrivial partition of
the nodes of G into A; B; there is at least one arc of G between A and B.
If F contains a collection of p consecutive unit intervals; then Ĝ(F) is connected

and hence Hamiltonian.

Proof. The �rst part follows directly from the fact that Ĝ is connected if and only if
G is connected.
Now consider any nontrivial partition A; B of the nodes of G(A; B 6= ∅). There must

be one of the p unit intervals which corresponds to an arc (x; y) with x ∈ A; y ∈ B,
so Ĝ is connected.

Proposition 2.9. For any family F of cyclic intervals with thickness r(F) = r; the
circular arc graph G will satisfy �(G) = �cyclic(G) = r if and only if in Ĝ there is a
collection of r node disjoint circuits.

Proof. (A) Assume G has an r-coloring (i.e. �(G) = r); this excludes the presence of
loops in G. So, there are no intervals with length larger than p. From the assumption
on F (constant thickness), each collection of nodes of the same colour i corresponds
to intervals forming exactly one circuit Ci; we have �(Ci) = 1 since we are in G =
G1 (1¿lcm(�(C1); : : : ; �(Cr)). So Ĝ has a collection of r node disjoint circuits.
(B) Assume that Ĝ contains a collection of r node disjoint circuits C1; : : : ; Cr; since

for each circuit C we have �(C)¿1 and since
∑r

i=1 �(Ci)6r for the node disjoint
circuits C1; : : : ; Cr , we must have �(Ci) = 1 for i = 1; : : : ; r. This de�nes an r-coloring
of G. For G = G1, any r-coloring is trivially a cyclic r-coloring.

This property can be used for checking whether G(F) is (r + i)-colorable: one
introduces i sequences of p consecutive unit intervals into F. Let Ĝ(F′) be the
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new graph corresponding to this extended family F′ , we will have r(F′) = r + i.
According to Proposition 2.9, G(F′) will be (r + i)-colorable if and only if Ĝ(F′)
has a collection of r + i node disjoint circuits. From an (r + i)-coloring of G(F′) we
get an (r+ i)-coloring of G(F) by removing the nodes associated to the unit intervals
in F′ −F.

3. Unrolling loops and chromatic number

In this section we intend to examine the behavior of the chromatic number of the
k-unrolling Gk of the circular arc graph G = G1 associated to a family F of cyclic
intervals. Related results on periodic scheduling and graph coloring are given in [5].
As mentioned, the graph G (circular arc graph) may have loops, so we shall have

to choose values k such that the k-unrolling Gk has no more loops; it will certainly be
the case if k¿dmax16i6n li=pe where li is the length of interval i and p the length
of the circle.
In [3,6] it was shown that a value D always exists such that �cyclic(GD) = r(F). In

applications one wishes to �nd a D which is as small as possible; such a D can be
obtained by �nding a collection C of circuits C1; : : : ; Cn covering all nodes of Ĝ such
that the 1cm(�(C1); : : : ; �(Cn)) is minimum. This is an NP-complete problem (see [6])
as mentioned.
We shall now �rst examine the case of usual q-colorings of Gk and extend some

results of [6] while providing alternate derivations. Instead of coloring the nodes of Gk

we shall sometimes consider that we are coloring the intervals directly.

Proposition 3.1. Let F be a family consisting of a single interval making exactly r
tours around the circle; then

�(GD) = dD=bD=rce

Proof. Clearly if D¡r;GD has a loop and no coloring is possible (�(GD)=∞). Let
us assume that D¿r and let u= dD=bD=rce.
(A) �(GD)¿u.
We have D intervals I1; I2; : : : ; ID of length r ·p to color; with each colour, we can

color at most bD · p=r · pc intervals. So we need at least u colors.
(B) �(GD)6u.
We shall construct a coloring of the D intervals with u colors.

Let D = � · r + � (�; � integers; 06�¡r)

and � = � · �+ � (�; � integers; 06�¡�)

The coloring rules are the following:
with each color i (i = 1; : : : ; r + �) color the intervals

(a) I( j−1)(r+�+1)+i for j = 1; 2; : : : ; �;

(b) I�(r+�+1)+(k−1)(r+�)+i for k = 1; 2; : : : ; �− �:
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With color r + �+ 1 color the intervals

(c) Ij(r+�+1) for j = 1; : : : ; �:

Here we assume that if � (resp. �− �) is zero, then (a), (c) (resp. (b)) do not exist.
In particular if D = � · r, then � = � = � = 0 and the algorithm gives an r-coloring.
It is immediate to verify that the intervals with the same color do not overlap (each
interval Ii = [ai; bi[ satis�es ai = i · p+ 1; bi = i · p+ r · p).
For instance the last interval colored with i6r + � is I�(r+�+1)+(�−�−1)(r+�)+i =

ID−r−�+i which ends at c = D · p − � · p + i · p ≡ i · p − � · p and the �rst interval
colored with i6r + � is Ii which starts at d= i · p+ 1 so c¡d.

For the general case, we consider that in F we have for i = 1; : : : ; p an interval Ii
starting at i and making exactly ri tours around the circle.
Let = p(r1 + · · ·+ rp) + p− 1.

Proposition 3.2.

�(GD)6dD=bD · p=ce:

Proof. A simple way of deriving this result is to consider that we have indeed a single
interval of length  (by concatenating all p intervals and by including the unit spaces
between the starting points of two consecutive intervals in F).
Let D · p= � · + � (�; � integrals; 06�¡).
From Proposition 3.1 there exists a coloring with dD=bD · p=ce colors.

Corollary 3.3 (Lelait [6]). There is a D such that for any k¿D �(GD)6r1 + · · · +
rp+1.

Proof. We have bD · p=c= � and dD=�e
= d(�+ �)=p�e
= d(+ �=�)(1=p)e= r1 + · · ·+ rp + d(�(p− 1) + �)=(p · �)e:

Choose D so that �¿ (for instance D · p¿2, i.e. D¿p(r1 + · · · + rp + 1)2), so
�¡6� and d(�(p− 1) + �)=(p · �)e61.

Remark 3.1. The value of D can be strongly improved by re�ning the proof technique;
our purpose was simply to derive the result as simply as possible.

Remark 3.2. For the general case of Proposition 3.2 we are not able to derive an
explicit formula giving �(GD) since the problem is NP-complete.

A q-coloring of Gk is strongly cyclic if it is a cyclic coloring associated to a
permutation ’ which is a cyclic permutation.
Let us now examine when a graph Gk has a strongly cyclic q-coloring. We shall

assume that k¿r.
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Proposition 3.4. Given a family F of cyclic intervals with constant thickness r(F)=
r. The following statements are equivalent:

(a) for k large enough; Gk has a strongly cyclic r-coloring;
(b) Ĝ is connected.

Proof.

(b) ⇒ (a): It follows from Proposition 2.4 that Ĝ has a Hamiltonian cycle C; it
corresponds to a sequence of cyclic intervals making exactly r tours around the circle.
C de�nes a cyclic r-coloring of Gr: by going along the cycle r times, color with color
i the ith occurrence of each interval. Clearly this r-coloring is strongly cyclic since it
corresponds to the cyclic permutation ’= (1; 2; : : : ; r).
(a) ⇒ (b): Assume Ĝ is not connected. Every cyclic r-coloring corresponds to a
partition of the node set of Ĝ into circuits C1; : : : ; Ct ; if D = lcm(�(C1); : : : ; �(Ct)), it
is a cyclic r-coloring of GD.

In F there are at least two subsets F1; F2 of intervals such that no interval in
F1 has an endpoint in common with some interval in F2. This means that in a cyclic
r-coloring of some Gk no interval in F1 can have the same color as some interval in
F2 (because in an r-coloring the intervals of the same color are consecutive without
empty space between them since r is the thickness of F). So there cannot be any
strongly cyclic r-coloring (because in such a coloring the consecutive occurrences of
each interval get successively the di�erent r colors). So for no k(¿r); Gk will have a
strongly cyclic r-coloring.

Remark 3.3 (Lelait [6]). Notice that for any F with r(F) = r it always holds that
Gr+1 has a strongly cyclic (r + 1)-coloring according to Proposition 2.7.

Strongly cyclic q-colorings are interesting when one uses a �le of rotating registers;
in such a system a variable stored during iteration i in register Ri is automatically
transferred for iteration i + 1 to register Ri+1. So we have a �nite number s of such
registers (which have to be considered cyclically, i.e R1 follows Rs) and for a system
an assignment will be possible if and only if one has a strongly cyclic q-coloring with
q6s. The above remark tells us that if r(F) = r, then we will always have either a
strongly cyclic r-coloring or a strongly cyclic (r + 1)-coloring. So an assignment will
be possible if s¿r + 1.

4. Conclusions

Connections between (strongly) cyclic q-colorings and acyclic q-colorings are not
completely understood yet. More research is needed along this line. We may however
raise some questions and bring some answers: is there a value K such that for any
circular arc graph G = G1; �cyclic(Gk) − �(Gk)6K? The answer is negative. Take a
family F consisting of one interval of length r = 2 (here p = 1); then Gk is a cycle
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of length k, so �(Gk) = 2 or 3 (depending on the parity of k), while �cyclic(Gk) = k if
k is prime. So there is no constant K .
Here K =K(k); given k and the size |F| of F what is the smallest K(k; |F|) such

that for any circular arc graph G associated to a family F with given size |F| we
have

�cyclic(Gk)− �(Gk)6K(k; |F|)?
Can one characterize the cases where �(Gk) = �cyclic(Gk)?
There are many more questions to be examined; the applications to register allocation

will undoubtedly suggest quite a few new ones.
At this stage we may simply conclude by emphasizing that the introduction of the

meeting graph has provided a clear insight into the concept of cyclic q-coloring of
k-unrollings Gk of a circular arc graph G.
In fact, the meeting graph Ĝ plays the same role with respect to G as the one

which representation “potential-nodes” of precedence constraints plays with respect to
“potential-arcs” representations in scheduling (see [7]).
In the case of Ĝ the tasks (intervals) are the nodes and sequencing constraints are

represented by arcs, while in G the tasks (intervals) are arcs and sequencing constraints
are represented by concatenation of arcs.
Here the sequencing problem is particular in the sense that we have a cyclic schedul-

ing problem.
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