6,723 research outputs found
Path Integral Over Black Hole Fluctuations
Evaluating a functional integral exactly over a subset of metrics that
represent the quantum fluctuations of the horizon of a black hole, we obtain a
Schroedinger equation in null coordinate time for the key component of the
metric. The equation yields a current that preserves probability if we use the
most natural choice of functional measure. This establishes the existence of
blurred horizons and a thermal atmosphere. It has been argued previously that
the existence of a thermal atmosphere is a direct concomitant of the thermal
radiation of black holes when the temperature of the hole is greater than that
of its larger environment, which we take as zero.Comment: 5 pages, added a couple of clarification
Spacetime Structure of an Evaporating Black Hole in Quantum Gravity
The impact of the leading quantum gravity effects on the dynamics of the
Hawking evaporation process of a black hole is investigated. Its spacetime
structure is described by a renormalization group improved Vaidya metric. Its
event horizon, apparent horizon, and timelike limit surface are obtained taking
the scale dependence of Newton's constant into account. The emergence of a
quantum ergosphere is discussed. The final state of the evaporation process is
a cold, Planck size remnant.Comment: 23 pages, BibTeX, revtex4, 7 figure
Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability
Extrinsic Curvature and the Einstein Constraints
The Einstein initial-value equations in the extrinsic curvature (Hamiltonian)
representation and conformal thin sandwich (Lagrangian) representation are
brought into complete conformity by the use of a decomposition of symmetric
tensors which involves a weight function. In stationary spacetimes, there is a
natural choice of the weight function such that the transverse traceless part
of the extrinsic curvature (or canonical momentum) vanishes.Comment: 8 pages, no figures; added new section; significant polishing of tex
Noether symmetry approach in phantom quintessence cosmology
In the framework of phantom quintessence cosmology, we use the Noether
Symmetry Approach to obtain general exact solutions for the cosmological
equations. This result is achieved by the quintessential (phantom) potential
determined by the existence of the symmetry itself. A comparison between the
theoretical model and observations is worked out. In particular, we use type Ia
supernovae and large scale structure parameters determined from the 2-degree
Field Galaxy Redshift Survey (2dFGRS)and from the Wide part of the VIMOS-VLT
Deep Survey (VVDS). It turns out that the model is compatible with the
presently available observational data. Moreover we extend the approach to
include radiation. We show that it is compatible with data derived from
recombination and it seems that quintessence do not affect nucleosynthesis
results.Comment: 26 pages, 13 figure
Rotating star initial data for a constrained scheme in numerical relativity
A new numerical code for computing stationary axisymmetric rapidly rotating
stars in general relativity is presented. The formulation is based on a fully
constrained-evolution scheme for 3+1 numerical relativity using the Dirac gauge
and maximal slicing. We use both the polytropic and MIT bag model equations of
state to demonstrate that the code can construct rapidly rotating neutron star
and strange star models. We compare numerical models obtained by our code and a
well-established code, which uses a different gauge condition, and show that
the two codes agree to high accuracy.Comment: Minor changes and one figure added. Version accepted for publication
in Class. Quant. Gra
Risks Associated with Drug Treatments for Kidney Stones
Introduction: Renal stones are one of the most painful medical conditions patients experience. For many they are also a recurrent problem. Fortunately, there are a number of drug therapies available to treat symptoms as well as prevent future stone formation.
Areas covered: Herein, we review the most common drugs used in the treatment of renal stones, explaining the mechanism of action and potential side effects. Search of the Medline databases and relevant textbooks was conducted to obtain the relevant information. Further details were sourced from drug prescribing manuals. Recent studies of drug effectiveness are included as appropriate.
Expert opinion: Recent controversies include medical expulsive therapy trials and complex role of urinary citrate in stone disease. Future directions in research will involve new medical therapies for stone prevention, for example new drugs for hyperoxaluria
Issues for the Next Generation of Galaxy Surveys
I argue that the weight of the available evidence favours the conclusions
that galaxies are unbiased tracers of mass, the mean mass density (excluding a
cosmological constant or its equivalent) is less than the critical Einstein-de
Sitter value, and an isocurvature model for structure formation offers a viable
and arguably attractive model for the early assembly of galaxies. If valid
these conclusions complicate our work of adding structure formation to the
standard model for cosmology, but it seems sensible to pay attention to
evidence.Comment: 14 pages, 3 postscript figures, uses rspublic.st
Entropic force in black hole binaries and its Newtonian limits
We give an exact solution for the static force between two black holes at the
turning points in their binary motion. The results are derived by Gibbs'
principle and the Bekenstein-Hawking entropy applied to the apparent horizon
surfaces in time-symmetric initial data. New power laws are derived for the
entropy jump in mergers, while Newton's law is shown to derive from a new
adiabatic variational principle for the Hilbert action in the presence of
apparent horizon surfaces. In this approach, entropy is strictly monotonic such
that gravity is attractive for all separations including mergers, and the
Bekenstein entropy bound is satisfied also at arbitrarily large separations,
where gravity reduces to Newton's law. The latter is generalized to point
particles in the Newtonian limit by application of Gibbs' principle to
world-lines crossing light cones.Comment: Accepted for publication in Phys. Rev.
Nesting behaviour influences species-specific gas exchange across avian eggshells
Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (GH2O) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell GH2O and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in GH2O has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between GH2O and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher GH2O than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher GH2O than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the GH2O are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher GH2O to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher GH2O to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours
- …