341 research outputs found

    Thermal resistivity of layered 4He films on ZYX graphite below 2 K

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23286/1/0000223.pd

    Simulating the Response of a Composite Honeycomb Energy Absorber

    Get PDF
    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test

    Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    Get PDF
    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and copilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. One lesson learned was that this approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and pretest predictions. Complete crash simulations with validated finite element models can be used to satisfy crash certification requirements, potentially reducing overall development costs

    A COMPARISON OF THREE METHODS FOR MARKERS SELECTION IN UNTARGETED LIPIDOMICS

    Full text link
    In the present paper is analyzed different algorithms for the marker’s selection of mass-spectrometry data in lipidomics. The goal of the investigation is to highlight the shortcomings and advantages of the processes and determine the most suitable.The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged

    Chemical recycling of plastics assisted by microwave multi-frequency heating

    Get PDF
    Handling plastic waste through recycling allows extending the life of polymeric materials, avoiding recurrence to incineration or landfilling. In contrast with traditional mechanical recycling technologies, chemical recycling enables the obtention of the virgin monomers by means of depolymerisation to create new polymers with the same mechanical and thermal properties as the originals. Research presented in this paper is part of the polynSPIRE project (Horizon 2020 European funding programme) and develops and scales-up a heated reactor to carry out the depolymerisation of polyamide-6 (PA6), polyamide-6, 6 (PA66) and polyurethane (PU) using microwave (MW) technology as the heating source. The purpose is to design and optimize a MW reactor using up to eight ports emitting electromagnetic waves. Finite element method (FEM) simulation and optimisation are used to design the reactor, considering as parameters the data obtained from experimental dielectric testing and lab-scale characterisation of the processes and materials studied. Two different COMSOL Multiphysics modules are involved in this work: Radio Frequency (RF) and Chemical Reaction Engineering (RE), to simulate the reactor cavity using two frequency levels (915 MHz and 2.45 GHz) with a power level of 46 kW, and the chemical depolymerisation process, respectively. A sensitivity study has been performed on key parameters such as the frequency, the number of ports, and position inside the reactor to consolidate the final design. It is expected that these results assist in the design and scale-up of microwave technology for the chemical recycling of plastics, and for the large-scale deployment of this sustainable recovery alternative. © 2021 The Author

    General practitioners’ perspectives on campaigns to promote rapid help-seeking behaviour at the onset of rheumatoid arthritis

    Get PDF
    Objective. To explore general practitioners’ (GPs’ ) perspectives on public health campaigns to encourage people with the early symptoms of rheumatoid arthritis (RA) to seek medical help rapidly. Design. Nineteen GPs participated in four semistructured focus groups. Focus groups were audio-recorded, transcribed verbatim, and analysed using thematic analysis. Results. GPs recognised the need for the early treatment of RA and identified that facilitating appropriate access to care was important. However, not all held the view that a delay in help seeking was a clinically significant issue. Furthermore, many were concerned that the early symptoms of RA were often non-specific, and that current knowledge about the nature of symptoms at disease onset was inadequate to inform the content of a help-seeking campaign. They argued that a campaign might not be able to specifically target those who need to present urgently. Poorly designed campaigns were suggested to have a negative impact on GPs’ workloads, and would “clog up” the referral pathway for genuine cases of RA. Conclusions. GPs were supportive of strategies to improve access to Rheumatological care and increase public awareness of RA symptoms. However, they have identified important issues that need to be considered in developing a public health campaign that forms part of an overall strategy to reduce time to treatment for patients with new onset RA. This study highlights the value of gaining GPs’ perspectives before launching health promotion campaigns

    Primary Hepatosplenic Large B-Cell Lymphoma: A Rare Aggressive Tumor

    Get PDF
    Diffuse large B-cell lymphoma is the most common form of lymphoma. It usually begins in the lymph nodes; up to 40% may have an extranodal presentation. According to a definition of primary extranodal lymphoma with presentation only in extranodal sites, there are reports of large B-cell lymphomas limited to liver or spleen as separate entities, and to date there have been only three documented cases of primary hepatosplenic presentation. This paper reports a fourth case. Due to a review of the literature and the clinical course of the case reported, we conclude that primary hepatosplenic large B-cell lymphoma has been found predominantly in females older than 60 years. The patients reported had <2 months of evolution prior to diagnosis, prominent B symptoms, splenomegaly in three and hepatomegaly in two, none with lymph node involvement. All had thrombocytopenia and abnormal liver function tests; three had anemia and elevated serum lactic dehydrogenase levels, two with hemophagocytosis in bone marrow. Because of the previously mentioned data, it can be stated that primary hepatosplenic lymphoma is an uncommon and aggressive form of disease that requires immediate recognition and treatment
    corecore