58,566 research outputs found
Piloted simulation of one-on-one helicopter air combat at NOE flight levels
A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments
Stationary Entangled Radiation from Micromechanical Motion
Mechanical systems facilitate the development of a new generation of hybrid
quantum technology comprising electrical, optical, atomic and acoustic degrees
of freedom. Entanglement is the essential resource that defines this new
paradigm of quantum enabled devices. Continuous variable (CV) entangled fields,
known as Einstein-Podolsky-Rosen (EPR) states, are spatially separated two-mode
squeezed states that can be used to implement quantum teleportation and quantum
communication. In the optical domain, EPR states are typically generated using
nondegenerate optical amplifiers and at microwave frequencies Josephson
circuits can serve as a nonlinear medium. It is an outstanding goal to
deterministically generate and distribute entangled states with a mechanical
oscillator. Here we observe stationary emission of path-entangled microwave
radiation from a parametrically driven 30 micrometer long silicon nanostring
oscillator, squeezing the joint field operators of two thermal modes by
3.40(37) dB below the vacuum level. This mechanical system correlates up to 50
photons/s/Hz giving rise to a quantum discord that is robust with respect to
microwave noise. Such generalized quantum correlations of separable states are
important for quantum enhanced detection and provide direct evidence for the
non-classical nature of the mechanical oscillator without directly measuring
its state. This noninvasive measurement scheme allows to infer information
about otherwise inaccessible objects with potential implications in sensing,
open system dynamics and fundamental tests of quantum gravity. In the near
future, similar on-chip devices can be used to entangle subsystems on vastly
different energy scales such as microwave and optical photons.Comment: 13 pages, 5 figure
New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3 +1.0 −0.8 kpc and an age of 44 +9 −8 Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63 +12 −11 Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales
Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate
Multiple arrays of Si wires were sequentially grown and transferred into a flexible polymer film from a single Si(111) wafer. After growth from a patterned, oxide-coated substrate, the wires were embedded in a polymer and then mechanically separated from the substrate, preserving the array structure in the film. The wire stubs that remained were selectively etched from the Si(111) surface to regenerate the patterned substrate. Then the growth catalyst was electrodeposited into the holes in the patterned oxide. Cycling through this set of steps allowed regrowth and polymer film transfer of several wire arrays from a single Si wafer
Longitudinal MRI assessment: the identification of relevant features in the development of posterior fossa syndrome in children
Up to 25% of children who undergo brain tumour resection surgery in the posterior fossa develop posterior fossa syndrome (PFS). This syndrome is characterised by mutism and disturbance in speech. Our hypothesis is that there is a correlation between PFS and the occurrence of hypertrophic olivary degeneration (HOD) in lobes within the posterior fossa, known as the inferior olivary nuclei (ION). HOD is exhibited as an increase in size and intensity of the ION on an MR image.
Intra-operative MRI (IoMRI) is used during surgical procedures at the Alder Hey Children’s Hospital, Liverpool, England, in the treatment of Posterior Fossa tumours and allows visualisation of the brain during surgery. The final MR scan on the IoMRI allows early assessment of the ION immediately after the surgical procedure.
The longitudinal MRI data of 28 patients was analysed in a collaborative study with Alder Hey Children’s Hospital, in order to identify the most relevant imaging features that relate to the development of PFS, specifically related to HOD.
A semi-automated segmentation process was carried out to delineate the ION on each MRI. Feature selection techniques were used to identify the most relevant features amongst the MRI data, demographics and clinical data provided by the hospital. A support vector machine (SVM) was used to analyse the discriminative ability of the selected features. The results indicate the presence of HOD as the most efficient feature that correlates with the development of PFS, followed by the change in intensity and size of the ION and whether HOD occurred bilaterally or unilaterally
Growth, Characterization, and Electrochemical Properties of Doped n-Type KTaO_3 Photoanodes
The effects of compositionally induced changes on the semiconducting properties, optical response, chemical stability, and overall performance of KTaO_3 photoanodes in photoelectrochemical (PEC) cells have been investigated. Single crystals of n-type Ca- and Ba-doped KTaO_3 with carrier concentrations ranging from 0.45 to 11.5×10^(19) cm^(−3) were grown and characterized as photoanodes in basic aqueous electrolyte PEC cells. The PEC properties of the crystals, including the photocurrent, photovoltage, and flatband potential in contact with 8.5 M NaOH(aq) were relatively independent of whether Ca or Ba was used to produce the semiconducting form of KTaO_3. All of the Ca- or Ba-doped KTaO_3 single-crystal photoanodes were chemically stable in the electrolyte and, based on the open-circuit potential and the band-edge positions, were capable of unassisted photochemical H_2 and O_2 evolution from H_2O. The minority-carrier diffusion lengths values were small and comparable to the depletion region width. Photoanodic currents were only observed for photoanode illumination with light above the bandgap (i.e., λ<340 nm). The maximum external quantum yield occurred at λ=255 nm (4.85 eV), and the depletion width plus the minority-carrier diffusion length ranged from 20 to 65 nm for the various KTaO_3-based photoanode materials
New X-ray Clusters in the EMSS II: Optical Properties
We present optical images for 9 new clusters of galaxies we have found in a
reanalysis of the Einstein IPC images comprising the Extended Medium
Sensitivity Survey (EMSS). Based on the presence of a red sequence of galaxies
in a color-magnitude (CM) diagram, a redshift is estimated for each cluster.
Galaxy overdensities (cluster richnesses) are measured in each field using the
B_gc statistic which allows their plausible identification with the X-ray
emission. The nature of our X-ray detection algorithm suggests that most of
these clusters have low X-ray surface brightness (LSB) compared to the
previously known EMSS clusters. We compare the optical and X-ray observations
of these clusters with the well-studied Canadian Network for Observational
Cosmology (CNOC) subsample of the EMSS, and conclude that the new clusters
exhibit a similar range of optical richnesses, X-ray luminosities, and,
somewhat surprisingly, galaxy populations as the predominantly rich, relaxed
EMSS/CNOC clusters.Comment: Accepted to ApJ, 17 pages, 14 figures, uses emulateapj5.st
- …