300 research outputs found

    Nitric Oxide Signaling Modulates Synaptic Transmission during Early Postnatal Development

    Get PDF
    Early γ-aminobutyric acid mediated (GABAergic) synaptic transmission and correlated neuronal activity are fundamental to network formation; however, their regulation during early postnatal development is poorly understood. Nitric oxide (NO) is an important retrograde messenger at glutamatergic synapses, and it was recently shown to play an important role also at GABAergic synapses in the adult brain. The subcellular localization and network effect of this signaling pathway during early development are so far unexplored, but its disruption at this early age is known to lead to profound morphological and functional alterations. Here, we provide functional evidence—using whole-cell recording—that NO signaling modulates not only glutamatergic but also GABAergic synaptic transmission in the mouse hippocampus during the early postnatal period. We identified the precise subcellular localization of key elements of the underlying molecular cascade using immunohistochemistry at the light—and electron microscopic levels. As predicted by these morpho-functional data, multineuron calcium imaging in acute slices revealed that this NO-signaling machinery is involved also in the control of synchronous network activity patterns. We suggest that the retrograde NO-signaling system is ideally suited to fulfill a general presynaptic regulatory role and may effectively fine-tune network activity during early postnatal development, while GABAergic transmission is still depolarizing

    The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe

    Effects of the fatty acid amide hydrolase inhibitor URB597 on coping behavior under challenging conditions in mice

    Get PDF
    RATIONALE: Recent evidence suggests that in addition to controlling emotional behavior in general, endocannabinoid signaling is engaged in shaping behavioral responses to challenges. This important function of endocannabinoids is still poorly understood. OBJECTIVES: Here we investigated the impact of blockade of fatty acid amide hydrolase (FAAH), the degrading enzyme of anandamide on behavioral responses induced by challenges of different intensity. METHODS: Mice treated with FAAH inhibitor URB597 were either manually restrained on their backs (back test) or received foot-shocks. RESULTS: The behavior of mice showed bimodal distribution in the back test: they either predominantly showed escape attempts or equally distributed time between passivity and escape. URB597 increased escapes in animals with low escape scores. No effects were noticed in mice showing high escape scores, which is likely due to a ceiling effect. We hypothesized that stronger stressors would wash out individual differences in coping; therefore, we exposed mice to foot-shocks that decreased locomotion and increased freezing in all mice. URB597 ameliorated both responses. The re-exposure of mice to the shock cage 14 days later without delivering shocks or treatment was followed by reduced and fragmented sleep as shown by electrophysiological recordings. Surprisingly, sleep was more disturbed after the reminder than after shocks in rats receiving vehicle before foot-shocks. These reminder-induced disturbances were abolished by URB597 administered before shocks. CONCLUSIONS: These findings suggest that FAAH blockade has an important role in the selection of behavioral responses under challenging conditions and-judging from its long-term effects-that it influences the cognitive appraisal of the challenge

    The effects of acute serotonin challenge on executive planning in patients with obsessive-compulsive disorder (OCD), their first-degree relatives, and healthy controls

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s00213-020-05597-7.Rationale: OCD is characterized by executive function impairment and by clinical responsivity to selective serotonin reuptake inhibitors (SSRIs). Executive planning deficits constitute a candidate endophenotype for OCD. It is not known whether this endophenotype is responsive to acute serotonin manipulation. Objective: To investigate the effects of acute SSRI administration on executive function in patients with OCD, first-degree relatives of patients with OCD and healthy controls. Methods: A randomized double-blind crossover study assessed the effects of single dose escitalopram (20mg) and placebo on executive planning in 24 patients with OCD, 13 clinically unaffected first-degree relatives of patients with OCD and 28 healthy controls. Performance on a Tower of London task measuring executive planning was assessed 4 hours after oral administration of the pharmacological challenge / placebo, and compared across and within groups using a mixed model ANOVA. Results: On the outcome measure of interest, i.e. the mean number of choices to obtain the correct solution, there was a marginally significant effect of group (F(2, 59)=3.1; p=0.052), with patients (Least square [LS] mean: 1.43; Standard Error [SE]: 0.06; 95% confidence interval [CI], 1.31-1.55) and their relatives (LS mean: 1.46; SE: 0.08; 95% CI, 1.30-1.62) performing worse than matched healthy controls (LS mean: 1.26; SE: 0.05; 95% CI, 1.15-1.37) on placebo. There was a trend towards a significant group x treatment interaction (F(2, 58)=2.8, p=0.069), with post hoc tests showing (i) patients (p=0.009; LS mean difference: 0.23; SE: 0.08) and relatives (p=0.03; LS mean difference: 0.22; SE: 0.10) were more impaired compared to controls and (ii) escitalopram was associated with improved executive planning in patients with OCD (p=0.013; LS mean difference: 0.1; SE: 0.04), but not other groups (both p>0.1; controls: LS mean difference: -0.03; SE: 0.04; relatives: LS mean difference: 0.02; SE: 0.05). Conclusion: Our findings are consistent with a view that there is impaired executive planning in OCD, and that this constitutes a behavioral endophenotype. In patients with OCD, but not in relatives, acute SSRI administration ameliorated this deficit. Further investigation is needed to understand common and differential involvement of neurochemical systems in patients with OCD and their relatives.Peer reviewe

    Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gamma-band oscillations recorded from human electrophysiological recordings, which may be associated with perceptual binding and neuronal connectivity, have been shown to be altered in people with autism. Transient auditory gamma-band responses, however, have not yet been investigated in autism or in the first-degree relatives of persons with the autism.</p> <p>Methods</p> <p>We measured transient evoked and induced magnetic gamma-band power and inter-trial phase-locking consistency in the magnetoencephalographic recordings of 16 parents of children with autism, 11 adults with autism and 16 control participants. Source space projection was used to separate left and right hemisphere transient gamma-band measures of power and phase-locking.</p> <p>Results</p> <p>Induced gamma-power at 40 Hz was significantly higher in the parent and autism groups than in controls, while evoked gamma-band power was reduced compared to controls. The phase-locking factor, a measure of phase consistency of neuronal responses with external stimuli, was significantly lower in the subjects with autism and the autism parent group, potentially explaining the difference between the evoked and induced power results.</p> <p>Conclusion</p> <p>These findings, especially in first degree relatives, suggest that gamma-band phase consistency and changes in induced versus induced power may be potentially useful endophenotypes for autism, particularly given emerging molecular mechanisms concerning the generation of gamma-band signals.</p

    Delta-9-tetrahydrocannabinol, neural oscillations above 20 Hz and induced acute psychosis

    Get PDF
    Rationale: An acute challenge with delta-9-tetrahydrocannabinol (THC) can induce psychotic symptoms including delusions. High electroencephalography (EEG) frequencies, above 20 Hz, have previously been implicated in psychosis and schizophrenia. Objectives: The objective of this study is to determine the effect of intravenous THC compared to placebo on high-frequency EEG. Methods: A double-blind cross-over study design was used. In the resting state, the high-beta to low-gamma magnitude (21–45 Hz) was investigated (n=13 pairs+4 THC only). Also, the event-related synchronisation (ERS) of motor-associated high gamma was studied using a self-paced button press task (n=15). Results: In the resting state, there was a significant condition × frequency interaction (p=0.00017), consisting of a shift towards higher frequencies under THC conditions (reduced high beta [21–27 Hz] and increased low gamma [27–45 Hz]). There was also a condition × frequency × location interaction (p=0.006), such that the reduction in 21–27-Hz magnitude tended to be more prominent in anterior regions, whilst posterior areas tended to show greater 27–45-Hz increases. This effect was correlated with positive symptoms, as assessed on the Positive and Negative Syndrome Scale (PANSS) (r=0.429, p=0.042). In the motor task, there was a main effect of THC to increase 65–130-Hz ERS (p=0.035) over contra-lateral sensorimotor areas, which was driven by increased magnitude in the higher, 85–130-Hz band (p=0.02) and not the 65–85-Hz band. Conclusions: The THC-induced shift to faster gamma oscillations may represent an over-activation of the cortex, possibly related to saliency misattribution in the delusional state

    Cholinergic Activation of M2 Receptors Leads to Context-Dependent Modulation of Feedforward Inhibition in the Visual Thalamus

    Get PDF
    The temporal dynamics of inhibition within a neural network is a crucial determinant of information processing. Here, the authors describe in the visual thalamus how neuromodulation governs the magnitude and time course of inhibition in an input-dependent way
    corecore