42 research outputs found

    Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments

    Get PDF
    The ionization and fragmentation dynamics of iodine molecules (I-2) are traced using very intense (similar to 10(14) W cm(-2)) ultra-short (similar to 60 fs) light pulses with 87 eV photons of the Free-electron LASer at Hamburg (FLASH) in combination with a synchronized femtosecond optical laser. Within a pump-probe scheme the IR pulse initiates a molecular fragmentation and then, after an adjustable time delay, the system is exposed to an intense FEL pulse. This way we follow the creation of highly-charged molecular fragments as a function of time, and probe the dynamics of multi-photon absorption during the transition from a molecule to individual atoms

    Optimization of K alpha bursts for photon energies between 1.7 and 7 keV produced by femtosecond-laser-produced plasmas of different scale length

    Get PDF
    The conversion efficiency of a 90 fs high-power laser pulse focused onto a solid target into x-ray Kalpha line emission was measured. By using three different elements as target material (Si, Ti, and Co), interesting candidates for fast x-ray diffraction applications were selected. The Kalpha output was measured with toroidally bent crystal monochromators combined with a GaAsP Schottky diode. Optimization was performed for different laser intensities as well as for different density scale lengths of a preformed plasma. These different scale lengths were realized by prepulses of different intensities and delay times with respect to the main pulse. Whereas the Kalpha yield varied by a factor of 1.8 for different laser intensities, the variation of the density scale length could provide a gain factor up to 4.6 for the Kalpha output

    Application of Relativistic Laser Plasmas for Induction of Nuclear Reactions.

    No full text
    Abstract not availableJRC.E-Institute for Transuranium Elements (Karlsruhe

    Two-Photon Inner-Shell Ionization in the Extreme Ultraviolet

    Get PDF
    We have observed the simultaneous inner-shell absorption of two extreme-ultraviolet photons by a Xe atom in an experiment performed at the short-wavelength free electron laser facility FLASH. Photoelectron spectroscopy permitted us to unambiguously identify a feature resulting from the ionization of a single electron of the 4d subshell of Xe by two photons each of energy (93±1)  eV. The feature’s intensity has a quadratic dependence on the pulse energy. The results are discussed and interpreted within the framework of recent results of ion spectroscopy experiments of Xe obtained at ultrahigh irradiance in the extreme-ultraviolet regime

    Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA

    No full text
    We report on the performance of a 60 kHz repetition rate sub-10 fs, optical parametric chirped pulse amplifier system with 2 W average power and 3 GW peak power. This is to our knowledge the highest average power sub-10 fs kHz-amplifier system reported to date. The amplifier is conceived for applications at free electron laser facilities and is designed such to be scalable in energy and repetition rate
    corecore