57 research outputs found

    Zno thin films growth optimization for piezoelectric application

    Get PDF
    The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode

    The spatial coverage of dairy cattle urine patches in an intensively grazed pasture system

    Get PDF
    Accurate field data on the paddock area affected by cow urine depositions are critical to the estimation and modelling of nitrogen (N) losses and N management in grazed pasture systems. A new technique using survey-grade global positioning system (GPS) technology was developed to precisely measure the paddock spatial area coverage, diversity and distribution of dairy cattle urine patches in grazed paddocks over time. A 4-year study was conducted on the Lincoln University Dairy Farm (LUDF), Canterbury, New Zealand, from 2003 to 2007. Twelve field plots, each 100m² in area, were established on typical grazing areas of the farm. All urine and dung deposits within the plots were visually identified, the pasture response area (radius) measured and position marked with survey-grade GPS. The plots were grazed as part of the normal grazing rotation of the farm and urine and dung deposits measured at 12-week intervals. The data were collated using spatial (GIS) software and an assessment of annual urine patch coverage and spatial distribution was made. Grazing intensities ranged from 17645 to 30295 cow grazing h/ha/yr. Mean annual areas of urine patches ranged from 0·34 to 0·40m² (4-year mean 0·37±0·009m²), with small but significant variation between years and seasons. Mean annual urine patch numbers were 6240±124 patches/ha/yr. The mean proportional area coverage for a single sampling event or season was 0·058 and the mean proportional annual urine patch coverage was 0·232±0·0071. There was a strong linear relationship between annual cow grazing h/ha and urine patch numbers/ha (R²=0·69) and also annual urine patch area coverage (R²=0·77). Within the stocking densities observed in this study, an annual increase of 10 000 cow grazing h/ha increased urine patch numbers by 1800 urine patches/ha/yr and annual urine patch area coverage by 0·07. This study presents new quantitative data on urine patch size, numbers and the spatial coverage of patches on a temporal basis

    Graphene Nanoreactors: Photoreduction of Prussian Blue in Aqueous Solution

    Get PDF
    Prussian dyes are characterized by interesting photomagnetic properties due to the photoinduced electron transfer involved in the Fe oxidation and spin state changes. Ferromagnetic Prussian blue (PB) in contact with titanium dioxide (TiO2) can be reduced to paramagnetic Prussian white (PW) upon UV band gap excitation of TiO2. This process is promoted by the presence of a hole scavenger, such as water, fundamental to ensure the overall charge balance and the continuity of the process. In order to clarify the photoinduced reduction mechanism and the role of water, an innovative system of graphene nanobubbles (GNBs) filled with a PB aqueous solution was developed, enabling the application of electron spectroscopies to the liquid phase, up to now limited by the vacuum required to overcome the short electron inelastic mean free path in dense medium. In this work GNBs formed on the photocatalytic substrate are able to act as "nanoreactors", and they can control and take part in the reaction. The evolution of Fe L2,3 edge X-ray absorption spectra measured in total electron yield through the graphene membrane revealed the electron reduction from PB (FeIII-CN-FeII) to PW (FeII-CN-FeII) upon UV irradiation, shedding light on the photoinduced electron transfer mechanism in liquid phase. The results, confirmed also by Raman spectroscopy, unequivocally demonstrate that the reaction occurs preferentially in aqueous solution, where water acts as hole scavenger. © 2017 American Chemical Society

    Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami

    Get PDF
    The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment

    Model checking mobile ambients

    No full text
    We settle the complexity bounds of the model checking problem for the ambient calculus with public names against the ambient logic. We show that if either the calculus contains replication or the logic contains the guarantee operator, the problem is undecidable. In the case of the replication-free calculus and guarantee-free logic we prove that the problem is PSPACE-complete. For the complexity upper-bound, we devise a new representation of processes that remains of polynomial size during process execution; this allows us to keep the model checking procedure in polynomial space. Moreover, we prove PSPACE-hardness of the problem for several quite simple fragments of the calculus and the logic; this suggests that there are no interesting fragments with polynomial-time model checking algorithms

    A Logic You Can Count On

    Get PDF
    We prove the decidability of the quantifier-free, static fragment of ambient logic, with composition adjunct and iteration, which corresponds to a kind of regular expression language for semistructured data. The essence of this result is a surprising connection between formulas of the ambient logic and counting constraints on (nested) vectors of integers. Our proof method is based on a new class of tree automata for unranked, unordered trees, which may result in practical algorithms for deciding the satisfiability of a formula. A benefit of our approach is to naturally lead to an extension of the logic with recursive definitions, which is also decidable. Finally, we identify a simple syntactic restriction on formulas that improves the effectiveness of our algorithms on large examples

    Non‐Precursory Accelerating Aseismic Slip During Rupture Nucleation

    No full text
    Accelerating aseismic slip events have been commonly observed during the rupture nucleation processes of the earthquake. While that accelerating aseismic slip is usually considered strong evidence for precursory activity, it remains unclear whether all accelerating aseismic slip events are precursory to an incoming earthquake. Two contrasting nucleation models have been introduced to explain the observations associated with the nucleation of unstable slip: the pre-slip and cascade nucleation models. Each of these two-end members, however, has its own limitations. In this study, we employ Discrete Element Method simulations of a 2-D strike-slip fault to simulate various rupture nucleation and triggering processes. Our simulation results manifest that the final seismic event is a product contributed by multiple pre-slip nucleation sites, which may interact, causing clock advance or cascade nucleation rupture processes. We also introduce a strengthening perturbation zone to investigate the role of a single nucleation site in an imminent seismic event. The simulation results reveal a new type of non-precursory aseismic slip, representing the region favoring the generation of the precursory slip process but not correlating to the incoming main event, which differs from the previous interpretation of precursory slip. Furthermore, we include weakening perturbation zones in some simulations to demonstrate how small earthquakes may or may not trigger a nucleation site depending on spatial and temporal conditions. Our simulation results imply that such non-precursory but accelerating aseismic slip events may suggest a fault segment that appears weakly coupled but possesses the potential to be triggered seismically.ISSN:2169-9313ISSN:0148-0227ISSN:2169-935
    corecore