4,079 research outputs found

    Strongly Localized State of a Photon at the Intersection of the Phase Slips in 2D Photonic Crystal with Low Contrast of Dielectric Constant

    Full text link
    Two-dimensional photonic crystal with a rectangular symmetry and low contrast (< 1) of the dielectric constant is considered. We demonstrate that, despite the {\em absence} of a bandgap, strong localization of a photon can be achieved for certain ``magic'' geometries of a unit cell by introducing two π/2\pi/2 phase slips along the major axes. Long-living photon mode is bound to the intersection of the phase slips. We calculate analytically the lifetime of this mode for the simplest geometry -- a square lattice of cylinders of a radius, rr. We find the magic radius, rcr_c, of a cylinder to be 43.10 percent of the lattice constant. For this value of rr, the quality factor of the bound mode exceeds 10610^6. Small (1\sim 1%) deviation of rr from rcr_c results in a drastic damping of the bound mode.Comment: 6 pages, 2 figure

    Evidence for Extremely High Dust Polarization Efficiency in NGC 3184

    Full text link
    Recent studies have found the Type II-plateau supernova (SN) 1999gi to be highly polarized (p_max = 5.8%, where p_max is the highest degree of polarization measured in the optical bandpass; Leonard & Filippenko 2001) and minimally reddened (E[B-V] = 0.21 +/- 0.09 mag; Leonard et al. 2002). From multiple lines of evidence, including the convincing fit of a ``Serkowski'' interstellar polarization (ISP) curve to the continuum polarization shape, we conclude that the bulk of the observed polarization is likely due to dust along the line of sight (l-o-s), and is not intrinsic to SN 1999gi. We present new spectropolarimetric observations of four distant Galactic stars close to the l-o-s to SN 1999gi (two are within 0.02 degrees), and find that all are null to within 0.2%, effectively eliminating Galactic dust as the cause of the high polarization. The high ISP coupled with the low reddening implies an extraordinarily high polarization efficiency for the dust along this l-o-s in NGC 3184: ISP / E(B-V) = 31^{+22}_{-9} % mag^{-1}. This is inconsistent with the empirical Galactic limit (ISP / E[B-V] < 9% mag^{-1}), and represents the highest polarization efficiency yet confirmed for a single sight line in either the Milky Way or an external galaxy.Comment: 27 pages, accepted for publication by the Astronomical Journa

    Selecting coastal hotspots to storm impacts at the regional scale: a Coastal Risk Assessment Framework

    Get PDF
    Managing coastal risk at the regional scale requires a prioritization of resources along the shoreline. A transparent and rigorous risk assessment should inform managers and stakeholders in their choices. This requires advances in modelling assessment (e.g., consideration of source and pathway conditions to define the probability of occurrence, nonlinear dynamics of the physical processes, better recognition of systemic impacts and non-economic losses) and open-source tools facilitating stakeholders’ engagement in the process. This paper discusses how the Coastal Risk Assessment Framework (CRAF) has been developed as part of the Resilience Increasing Strategies for Coasts Toolkit (RISC-KIT). The framework provides two levels of analysis. A coastal index approach is first recommended to narrow down the risk analysis to a reduced number of sectors which are subsequently geographically grouped into potential hotspots. For the second level of analysis an integrated modelling approach improves the regional risk assessment of the identified hotspots by increasing the spatial resolution of the hazard modelling by using innovative process-based multi-hazard models, by including generic vulnerability indicators in the impact assessment, and by calculating regional systemic impact indicators. A multi-criteria analysis of these indicators is performed to rank the hotspots and support the stakeholders in their selection. The CRAF has been applied and validated on ten European case studies with only small deviation to areas already recognised as high risk. The flexibility of the framework is essential to adapt the assessment to the specific region characteristics. The involvement of stakeholders is crucial not only to select the hotpots and validate the results, but also to support the collection of information and the valuation of assets at risk. As such, the CRAF permits a comprehensive and systemic risk analysis of the regional coast in order to identify and to select higher risk areas. Yet efforts still need to be amplified in the data collection process, in particular for socio-economic and environmental impacts

    Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized δ\delta-Pu

    Full text link
    The effects on the local structure due to self-irradiation damage of Ga stabilized δ\delta-Pu stored at cryogenic temperatures have been examined using extended x-ray absorption fine structure (EXAFS) experiments. Extensive damage, seen as a loss of local order, was evident after 72 days of storage below 15 K. The effect was observed from both the Pu and Ga sites, although less pronounced around Ga. Isochronal annealing was performed on this sample to study the annealing processes that occur between cryogenic and room temperature storage conditions, where damage is mostly reversed. Damage fractions at various points along the annealing curve have been determined using an amplitude-ratio method, standard EXAFS fitting, and a spherical crystallite model, and provide information complementary to previous electrical resistivity- and susceptibility-based isochronal annealing studies. The use of a spherical crystallite model accounts for the changes in EXAFS spectra using just two parameters, namely, the crystalline fraction and the particle radius. Together, these results are discussed in terms of changes to the local structure around Ga and Pu throughout the annealing process and highlight the unusual role of Ga in the behavior of the lowest temperature anneals.Comment: 13 pages, 10 figure

    Spectropolarimetry of the Type IIb Supernova 2001ig

    Get PDF
    We present spectropolarimetric observations of the Type IIb SN 2001ig in NGC 7424; conducted with the ESO VLT FORS1 on 2001 Dec 16, 2002 Jan 3 and 2002 Aug 16 or 13, 31 and 256 days post-explosion. These observations are at three different stages of the SN evolution: (1) The hydrogen-rich photospheric phase, (2) the Type II to Type Ib transitional phase and (3) the nebular phase. At each of these stages, the observations show remarkably different polarization properties as a function of wavelength. We show that the degree of interstellar polarization is 0.17%. The low intrinsic polarization (~0.2%) at the first epoch is consistent with an almost spherical (<10% deviation from spherical symmetry) hydrogen dominated ejecta. Similar to SN 1987A and to Type IIP SNe, a sharp increase in the degree of the polarization (~1%) is observed when the outer hydrogen layer becomes optically thin by day 31; only at this epoch is the polarization well described by a ``dominant axis.'' The polarization angle of the data shows a rotation through ~40 degrees between the first and second epochs, indicating that the asymmetries of the first epoch were not directly coupled with those observed at the second epoch. For the most polarized lines, we observe wavelength-dependent loop structures in addition to the dominant axis on the Q-U plane. We show that the polarization properties of Type IIb SNe are roughly similar to one another, but with significant differences arising due to line blending effects especially with the high velocities observed for SN 2001ig. This suggests that the geometry of SN 2001ig is related to SN 1993J and that these events may have arisen from a similar binary progenitor system.Comment: 42 pages, 12 figures (figs. 11 and 12 are both composed of four subpanels, figs. 6,7,8,11 and 12 are in color, fig. 1 is low res and a high res version is available at http://www.as.utexas.edu/~jrm/), ApJ Accepte

    Superconductivity in the Correlated Pyrochlore Cd_2Re_2O_7

    Full text link
    We report the observation of superconductivity in high-quality Cd2_2Re2_2O7_7 single crystals with room-temperature pyrochlore structure. Resistivity and ac susceptibility measurements establish an onset transition temperature Tconset_c^{onset} = 1.47 K with transition width Δ\DeltaTc_c = 0.25 K. In applied magnetic field, the resistive transition shows a type-II character, with an approximately linear temperature-dependence of the upper critical field Hc2_{c2}. The bulk nature of the superconductivity is confirmed by the specific heat jump with Δ\DeltaC = 37.9 mJ/mol-K. Using the γ\gamma value extracted from normal-state specific heat data, we obtain Δ\DeltaC/γ\gammaTc_c = 1.29, close to the weak coupling BCS value. In the normal state, a negative Hall coefficient below 100 K suggests electron-like conduction in this material. The resistivity exhibits a quadratic T-dependence between 2 and 60 K, i.e., ρ=ρ0\rho =\rho_0+AT2^2, indicative of Fermi-liquid behavior. The values of the Kadowaki-Woods ratio A/γ2\gamma^2 and the Wilson ratio are comparable to that for strongly correlated materials.Comment: 4 pages, 5 figure

    Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate

    Full text link
    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many interstellar molecules. In dense clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density, and temperature. On the other hand, observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. However, diffuse cloud models have been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons, the electron fraction, and the cosmic-ray ionisation rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is already known. Taken together, these results allow us to derive the value of the third uncertain model parameter: we find that the cosmic-ray ionisation rate in this sightline is forty times faster than previously assumed. If such a high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres

    Spectroscopy and dissociative recombination of the lowest rotational states of H3+

    Full text link
    The dissociative recombination of the lowest rotational states of H3+ has been investigated at the storage ring TSR using a cryogenic 22-pole radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15 K to the lowest rotational levels, (J,G)=(1,0) and (1,1), which belong to the ortho and para proton-spin symmetry, respectively. The rate coefficients and dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2 were measured and compared to the rate and dynamics of a hot H3+ beam from a Penning source. The production of cold H3+ rotational populations was separately studied by rovibrational laser spectroscopy using chemical probing with argon around 55 K. First results indicate a ~20% relative increase of the para contribution when using para-H2 as parent gas. The H3+ rate coefficient observed for the para-H2 source gas, however, is quite similar to the H3+ rate for the normal-H2 source gas. The recombination dynamics confirm that for both source gases, only small populations of rotationally excited levels are present. The distribution of 3-body fragmentation geometries displays a broad part of various triangular shapes with an enhancement of ~12% for events with symmetric near-linear configurations. No large dependences on internal state or collision energy are found.Comment: 10 pages, 9 figures, to be published in Journal of Physics: Conference Proceeding

    Muon spin rotation measurements of the superfluid density in fresh and aged superconducting PuCoGa5_5

    Full text link
    We have measured the temperature dependence and magnitude of the superfluid density ρs(T)\rho_{\rm s}(T) via the magnetic field penetration depth λ(T)\lambda(T) in PuCoGa5_5 (nominal critical temperature Tc0=18.5T_{c0} = 18.5 K) using the muon spin rotation technique in order to investigate the symmetry of the order parameter, and to study the effects of aging on the superconducting properties of a radioactive material. The same single crystals were measured after 25 days (Tc=18.25T_c = 18.25 K) and 400 days (Tc=15.0T_c = 15.0 K) of aging at room temperature. The temperature dependence of the superfluid density is well described in both materials by a model using d-wave gap symmetry. The magnitude of the muon spin relaxation rate σ\sigma in the aged sample, σ1/λ2ρs/m\sigma\propto 1/\lambda^2\propto\rho_s/m^*, where mm^* is the effective mass, is reduced by about 70% compared to fresh sample. This indicates that the scattering from self-irradiation induced defects is not in the limit of the conventional Abrikosov-Gor'kov pair-breaking theory, but rather in the limit of short coherence length (about 2 nm in PuCoGa5_5) superconductivity.Comment: 11 page
    corecore