6,205 research outputs found
The magnetic form factor of the deuteron in chiral effective field theory
We calculate the magnetic form factor of the deuteron up to O(eP^4) in the
chiral EFT expansion of the electromagnetic current operator. The two LECs
which enter the two-body part of the isoscalar NN three-current operator are
fit to experimental data, and the resulting values are of natural size. The
O(eP^4) description of G_M agrees with data for momentum transfers Q^2 < 0.35
GeV^2.Comment: 4 pages, 2 figure
Embodiment and designing learning environments
There is increasing recognition amongst learning sciences researchers of the critical role that the body plays in thinking and reasoning across contexts and across disciplines. This workshop brings ideas of embodied learning and embodied cognition to the design of instructional environments that engage learners in new ways of moving within, and acting upon, the physical world. Using data and artifacts from participants' research and designs as a starting point, this workshop focuses on strategies for how to effectively leverage embodiment in learning activities in both technology and non-technology environments. Methodologies for studying/assessing the body's role in learning are also addressed
Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory
Manipulating expressions in many-body perturbation theory becomes unwieldily
with increasing order of the perturbation theory. Here I derive a set of
theorems for efficient simplification of such expressions. The derived rules
are specifically designed for implementing with symbolic algebra tools. As an
illustration, we count the numbers of Brueckner-Goldstone diagrams in the first
several orders of many-body perturbation theory for matrix elements between two
states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from
http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm
Complexity Measures from Interaction Structures
We evaluate new complexity measures on the symbolic dynamics of coupled tent
maps and cellular automata. These measures quantify complexity in terms of
-th order statistical dependencies that cannot be reduced to interactions
between units. We demonstrate that these measures are able to identify
complex dynamical regimes.Comment: 11 pages, figures improved, minor changes to the tex
Tangential Touch between the Free and the Fixed Boundary in a Semilinear Free Boundary Problem in Two Dimensions
The main result of this paper concerns the behavior of a free boundary
arising from a minimization problem, close to the fixed boundary in two
dimensions
Theoretical determination of lifetimes of metastable states in Sc III and Y III
Lifetimes of the first two metastable states in Sc^{2+} and Y^{2+} are
determined using the relativistic coupled-cluster theory. There is a
considerable interest in studying the electron correlation effects in these
ions as though their electronic configurations are similar to the neutral
alkali atoms, their structures are very different from the latter. We have made
a comparative study of the correlation trends between the above doubly ionized
systems with their corresponding neutral and singly ionized iso-electronic
systems. The lifetimes of the excited states of these ions are very important
in the field of astrophysics, especially for the study of post-main sequence
evolution of the cool giant stars.Comment: 13 pages, 1 figure and 5 table
Relativistic coupled-cluster calculations of Ne, Ar, Kr and Xe: correlation energies and dipole polarizabilities
We have carried out a detailed and systematic study of the correlation
energies of inert gas atoms Ne, Ar, Kr and Xe using relativistic many-body
perturbation theory and relativistic coupled-cluster theory. In the
relativistic coupled-cluster calculations, we implement perturbative triples
and include these in the correlation energy calculations. We then calculate the
dipole polarizability of the ground states using perturbed coupled-cluster
theory.Comment: 10 figures, 6 tables, submitted to PR
Sunspot observations from the SOUP instrument on Spacelab 2
A series of white light images obtained by the SOUP instrument on Spacelab 2 of active region 4682 on August 5, 1985 were analyzed in the area containing sunspots. Although the umbra of the spot is underexposed, the film is well exposed in the penumbral regions. These data were digitally processed to remove noise and to separate p-mode oscillations from low velocity material motions. The results of this preliminary investigation include: (1) proper motion measurements of a radial outflow in the photospheric granulation pattern just outside the penumbra; (2) discovery of occasional bright structures (streakers) that appear to be ejected outward from the penumbra; (3) broad dark clouds moving outward in the penumbra in addition to the well known bright penumbral grains moving inward; (4) apparent extensions and contractions of penumbral filaments over the photosphere; and (5) observation of a faint bubble or loop-like structure which seems to expand from two bright penumbral filaments into the photosphere
Ab initio study of alanine polypeptide chains twisting
We have investigated the potential energy surfaces for alanine chains
consisting of three and six amino acids. For these molecules we have calculated
potential energy surfaces as a function of the Ramachandran angles Phi and Psi,
which are widely used for the characterization of the polypeptide chains. These
particular degrees of freedom are essential for the characterization of
proteins folding process. Calculations have been carried out within ab initio
theoretical framework based on the density functional theory and accounting for
all the electrons in the system. We have determined stable conformations and
calculated the energy barriers for transitions between them. Using a
thermodynamic approach, we have estimated the times of characteristic
transitions between these conformations. The results of our calculations have
been compared with those obtained by other theoretical methods and with the
available experimental data extracted from the Protein Data Base. This
comparison demonstrates a reasonable correspondence of the most prominent
minima on the calculated potential energy surfaces to the experimentally
measured angles Phi and Psi for alanine chains appearing in native proteins. We
have also investigated the influence of the secondary structure of polypeptide
chains on the formation of the potential energy landscape. This analysis has
been performed for the sheet and the helix conformations of chains of six amino
acids.Comment: 24 pages, 10 figure
- …