60 research outputs found

    Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: optical designs and associated limitations

    Get PDF
    Novel, high-fidelity results related to soot from microgravity flames were obtained by an international topical team on fire safety in space. More specifically, embedded optical techniques for evaluation of the soot-related radiative feedback to the base material from a spreading non-premixed flame in microgravity were developed. The configuration used a non-buoyant axisymmetric flame propagating in an opposed laminar stream overa Low Density PolyEthylene coating of an electrical wire. Within this context, both the standard Broadband Two Color Pyrometry (B2CP) and its recent extension Broadband Modulated Absorption/Emission (BMAE) technique can be deployed to measure the spatial distribution of soot temperature and volume fraction within the flame. Both fields are then processed to establish the field of local radiative balance attributed to soot within the flame, and ultimately the soot contribution to the radiative flux to the wire. The present study first assesses the consistency of the methodology contrasting an experimental frame and a synthetic one, the latter being produced by a signal modeling that processes fields delivered by a numerical simulation of the configuration as inputs. Using the synthetic signals obtained, the fields of local radiative balance within the flame are then computed and significant discrepancies were disclosed locally between the fields originating from the synthetic BMAE and B2CP inputs. Nevertheless, the subsequent evaluation of the soot-related radiative heat feedback to the wire shows that a weak deviation among the techniques implemented is expected. This finding is corroborated by similar evaluations conducted with experimental BMAE and B2CP measurements obtained in parabolic flights. As BMAE is implemented in an ISS configuration within the SCEM rig, BMAE and B2CP will soon provide long-duration soot observations in microgravity. In order to contrast the upcoming results, this current study quantifies discrepancies originating from the post-processing regarding soot temperature and volume fraction, and shows that the radiative feedback evaluation from both methods should be consistent

    Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: Optical designs and associated limitations

    Get PDF
    Novel, high-fidelity results related to soot from microgravity flames were obtained by an international topical team on fire safety in space. More specifically, embedded optical techniques for evaluation of the soot-related radiative feedback to the base material from a spreading non-premixed flame in microgravity were developed. The configuration used a non-buoyant axisymmetric flame propagating in an opposed laminar stream over a Low Density PolyEthylene coating of an electrical wire. Within this context, both the standard Broadband Two Color Pyrometry (B2CP) and its recent extension Broadband Modulated Absorption/Emission (BMAE) technique can be deployed to measure the spatial distribution of soot temperature and volume fraction within the flame. Both fields are then processed to establish the field of local radiative balance attributed to soot within the flame, and ultimately the soot contribution to the radiative flux to the wire. The present study first assesses the consistency of the methodology contrasting an experimental frame and a synthetic one, the latter being produced by a signal modeling that processes fields delivered by a numerical simulation of the configuration as inputs. Using the synthetic signals obtained, the fields of local radiative balance within the flame are then computed and significant discrepancies were disclosed locally between the fields originating from the synthetic BMAE and B2CP inputs. Nevertheless, the subsequent evaluation of the soot-related radiative heat feedback to the wire shows that a weak deviation among the techniques implemented is expected. This finding is corroborated by similar evaluations conducted with experimental BMAE and B2CP measurements obtained in parabolic flights. As BMAE is implemented in an ISS configuration within the SCEM rig, BMAE and B2CP will soon provide long-duration soot observations in microgravity. In order to contrast the upcoming results, this current study quantifies discrepancies originating from the post-processing regarding soot temperature and volume fraction, and shows that the radiative feedback evaluation from both methods should be consistent

    Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes

    Get PDF
    The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program

    GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5ʹ and 3ʹ ends of its target genes

    Get PDF
    The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5′ and 3′ ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5′ end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3′ ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5′ and 3′ ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions

    Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida

    Get PDF
    Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar

    Genetic Analysis of Floral Symmetry in Van Gogh's Sunflowers Reveals Independent Recruitment of CYCLOIDEA Genes in the Asteraceae

    Get PDF
    The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to specify zygomorphy in different species within the Asteraceae

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Variations in cell wall monosaccharide composition during seed development in Coffea arabica L. : Comparison between Coffea arabica var. Bourbon and Coffea arabica var. Laurina

    No full text
    Cell wall polysaccharide composition changed over seed development. Differences between B and BP only concerned the fruit growth period. Coffea arabica var. Laurina, also known as 'Bourbon Pointu' (BP), is a natural mutant of Coffea arabica var. Bourbon (B). BP is known for its high organoleptic quality, which is today compared with the well-known 'Blue Mountain'. Cell wall composition of seeds could explain the better cup quality of BP. To test this hypothesis, we investigated possible impacts of the laurina mutation on the cell wall composition of seeds over a time course, and more precisely on polysaccharides. The identification of cell wall polysaccharides (CWP) was deduced from permethylation analysis, whereas cell wall monosaccharide (CWM) composition was estimated using trifluoroacetic acid (TFA) and H2SO4. The observation of CWM over time allowed defining three phases. The phi 1 phase, from the 8th to 14th week after flowering (WAF), was characterized by the predominance of arabinogalactans, arabinoxylans and arabinans. The phi 2 phase, from the 14th to 20th WAF, was mainly characterized by the increased importance of highly branched galactomannans at the expense of arabinoxylans. Lastly, galactomannans constituted the main CWP present in the third phase (from the 20th to the 32nd WAF), associated with arabinogalactans and arabinans. Variations in CWP composition were connected to fruit and seed development. The end of the phi 1 phase coincides with the end of the fruit growth, i.e., with the end of the endosperm development. During the phi 2 phase, endosperm becomes milky and then hard due to the galactomannan deposition. Moreover, the phi 3 phase corresponded to the fruit maturation stage in which CWM composition did not change over time. Galactomannans were less substituted and constitute the main seed CWP. Lastly, the evidence of laurina mutation impact on cell wall polysaccharides of seeds was only observed during the fruit growth period. Consequently, the difference of cup quality between B and BP would not be due to CWP composition at the end of the phi 3 phase, i.e., when coffee beans are harvested

    Comparison between Coffea arabica L. 'Laurina' and C. arabica 'Bourbon' seedlings grown in daylight or darkness for their polysaccharidic cell wall composition and caffeine and chlorogenic acid contents

    No full text
    Cell wall polysaccharidic composition changed between cotyledons, hypocotyls and roots. Neither the laurina mutation nor the presence of light had an impact on this composition. Coffea arabica 'Laurina', a natural mutant of Coffea arabica 'Bourbon' (B), is also known as 'Bourbon Pointu' (BP). In seedlings under daylight, the laurina mutation leads to semi-dwarf hypocotyls, but this effect disappears in darkness conditions. The first step of our work was to analyze the impact of the mutation on the monosaccharide cell wall composition in cotyledons, hypocotyls and roots in relation to growth conditions (daylight vs darkness). Secondly, the same type of comparison was carried out for caffeine and chlorogenic acid (CQA) contents. Cell wall polysaccharides (CWP) present in cotyledons, hypocotyls and roots were identified. Neither the laurina mutation nor the growth conditions had an impact on the CWP composition. By contrast, there were marked differences between cotyledons, hypocotyls and roots regarding their CWP composition, CQA and caffeine contents. Lastly, the mutation and the light did not modify the CQA content in the three organs, whereas the mutation, but the light, lowered the caffeine (CAF) content
    corecore