684 research outputs found
Weyl group multiple Dirichlet series constructed from quadratic characters
We construct multiple Dirichlet series in several complex variables whose
coefficients involve quadratic residue symbols. The series are shown to have an
analytic continuation and satisfy a certain group of functional equations.
These are the first examples of an infinite collection of unstable Weyl group
multiple Dirichlet series in greater than two variables.Comment: incorporated referee's comment
The Forest City Landslide
A large and complex landslide in marine shales is impacting the approach roadway and a 4600-ft long bridge carrying U.S. Route 212 over the Oahe Reservoir at Forest City, South Dakota. After extensive investigation and analyses it was determined that the main landslide could be remediated by unloading the slide using a large cut through the escarpment located upslope from the bridge. Although moving with the main slide, the 900- foot long approach embankment is failing in directions differing from the main slide. Preliminary study indicates that the independent slides within the approach embankment can be stabilized by stone columns or reinforced concrete dowels. Partial remediation has been achieved by the installation of stone columns around the embankment toe
Haar expectations of ratios of random characteristic polynomials
We compute Haar ensemble averages of ratios of random characteristic
polynomials for the classical Lie groups K = O(N), SO(N), and USp(N). To that
end, we start from the Clifford-Weyl algebera in its canonical realization on
the complex of holomorphic differential forms for a C-vector space V. From it
we construct the Fock representation of an orthosymplectic Lie superalgebra osp
associated to V. Particular attention is paid to defining Howe's oscillator
semigroup and the representation that partially exponentiates the Lie algebra
representation of sp in osp. In the process, by pushing the semigroup
representation to its boundary and arguing by continuity, we provide a
construction of the Shale-Weil-Segal representation of the metaplectic group.
To deal with a product of n ratios of characteristic polynomials, we let V =
C^n \otimes C^N where C^N is equipped with its standard K-representation, and
focus on the subspace of K-equivariant forms. By Howe duality, this is a
highest-weight irreducible representation of the centralizer g of Lie(K) in
osp. We identify the K-Haar expectation of n ratios with the character of this
g-representation, which we show to be uniquely determined by analyticity, Weyl
group invariance, certain weight constraints and a system of differential
equations coming from the Laplace-Casimir invariants of g. We find an explicit
solution to the problem posed by all these conditions. In this way we prove
that the said Haar expectations are expressed by a Weyl-type character formula
for all integers N \ge 1. This completes earlier work by Conrey, Farmer, and
Zirnbauer for the case of U(N).Comment: LaTeX, 70 pages, Complex Analysis and its Synergies (2016) 2:
Arithmetical properties of Multiple Ramanujan sums
In the present paper, we introduce a multiple Ramanujan sum for arithmetic
functions, which gives a multivariable extension of the generalized Ramanujan
sum studied by D. R. Anderson and T. M. Apostol. We then find fundamental
arithmetic properties of the multiple Ramanujan sum and study several types of
Dirichlet series involving the multiple Ramanujan sum. As an application, we
evaluate higher-dimensional determinants of higher-dimensional matrices, the
entries of which are given by values of the multiple Ramanujan sum.Comment: 19 page
Hall viscosity, orbital spin, and geometry: paired superfluids and quantum Hall systems
The Hall viscosity, a non-dissipative transport coefficient analogous to Hall
conductivity, is considered for quantum fluids in gapped or topological phases.
The relation to mean orbital spin per particle discovered in previous work by
one of us is elucidated with the help of examples, using the geometry of shear
transformations and rotations. For non-interacting particles in a magnetic
field, there are several ways to derive the result (even at non-zero
temperature), including standard linear response theory. Arguments for the
quantization, and the robustness of Hall viscosity to small changes in the
Hamiltonian that preserve rotational invariance, are given. Numerical
calculations of adiabatic transport are performed to check the predictions for
quantum Hall systems, with excellent agreement for trial states. The
coefficient of k^4 in the static structure factor is also considered, and shown
to be exactly related to the orbital spin and robust to perturbations in
rotation invariant systems also.Comment: v2: Now 30 pages, 10 figures; new calculation using disk geometry;
some other improvements; no change in result
Twisted Frobenius-Schur indicators for Hopf algebras
The classical Frobenius-Schur indicators for finite groups are character sums
defined for any representation and any integer m greater or equal to 2. In the
familiar case m=2, the Frobenius-Schur indicator partitions the irreducible
representations over the complex numbers into real, complex, and quaternionic
representations. In recent years, several generalizations of these invariants
have been introduced. Bump and Ginzburg, building on earlier work of Mackey,
have defined versions of these indicators which are twisted by an automorphism
of the group. In another direction, Linchenko and Montgomery have defined
Frobenius-Schur indicators for semisimple Hopf algebras. In this paper, the
authors construct twisted Frobenius-Schur indicators for semisimple Hopf
algebras; these include all of the above indicators as special cases and have
similar properties.Comment: 12 pages. Minor revision
Analytic representations with theta functions for systems on ℤ(d) and on .
yesAn analytic representation with Theta functions on a torus, for systems with variables in ℤ(d),
is considered. Another analytic representation with Theta functions on a strip, for systems with
positions in a circle S and momenta in Z, is also considered. The reproducing kernel formalism for these two systems is studied. Wigner and Weyl functions in this language, are also studied
Crystal constructions in Number Theory
Weyl group multiple Dirichlet series and metaplectic Whittaker functions can
be described in terms of crystal graphs. We present crystals as parameterized
by Littelmann patterns and we give a survey of purely combinatorial
constructions of prime power coefficients of Weyl group multiple Dirichlet
series and metaplectic Whittaker functions using the language of crystal
graphs. We explore how the branching structure of crystals manifests in these
constructions, and how it allows access to some intricate objects in number
theory and related open questions using tools of algebraic combinatorics
Schur Polynomials and the Yang-Baxter equation
We show that within the six-vertex model there is a parametrized Yang-Baxter
equation with nonabelian parameter group GL(2)xGL(1) at the center of the
disordered regime. As an application we rederive deformations of the Weyl
character formule of Tokuyama and of Hamel and King.Comment: Revised introduction; slightly changed reference
- …