684 research outputs found

    Weyl group multiple Dirichlet series constructed from quadratic characters

    Full text link
    We construct multiple Dirichlet series in several complex variables whose coefficients involve quadratic residue symbols. The series are shown to have an analytic continuation and satisfy a certain group of functional equations. These are the first examples of an infinite collection of unstable Weyl group multiple Dirichlet series in greater than two variables.Comment: incorporated referee's comment

    The Forest City Landslide

    Get PDF
    A large and complex landslide in marine shales is impacting the approach roadway and a 4600-ft long bridge carrying U.S. Route 212 over the Oahe Reservoir at Forest City, South Dakota. After extensive investigation and analyses it was determined that the main landslide could be remediated by unloading the slide using a large cut through the escarpment located upslope from the bridge. Although moving with the main slide, the 900- foot long approach embankment is failing in directions differing from the main slide. Preliminary study indicates that the independent slides within the approach embankment can be stabilized by stone columns or reinforced concrete dowels. Partial remediation has been achieved by the installation of stone columns around the embankment toe

    Haar expectations of ratios of random characteristic polynomials

    Get PDF
    We compute Haar ensemble averages of ratios of random characteristic polynomials for the classical Lie groups K = O(N), SO(N), and USp(N). To that end, we start from the Clifford-Weyl algebera in its canonical realization on the complex of holomorphic differential forms for a C-vector space V. From it we construct the Fock representation of an orthosymplectic Lie superalgebra osp associated to V. Particular attention is paid to defining Howe's oscillator semigroup and the representation that partially exponentiates the Lie algebra representation of sp in osp. In the process, by pushing the semigroup representation to its boundary and arguing by continuity, we provide a construction of the Shale-Weil-Segal representation of the metaplectic group. To deal with a product of n ratios of characteristic polynomials, we let V = C^n \otimes C^N where C^N is equipped with its standard K-representation, and focus on the subspace of K-equivariant forms. By Howe duality, this is a highest-weight irreducible representation of the centralizer g of Lie(K) in osp. We identify the K-Haar expectation of n ratios with the character of this g-representation, which we show to be uniquely determined by analyticity, Weyl group invariance, certain weight constraints and a system of differential equations coming from the Laplace-Casimir invariants of g. We find an explicit solution to the problem posed by all these conditions. In this way we prove that the said Haar expectations are expressed by a Weyl-type character formula for all integers N \ge 1. This completes earlier work by Conrey, Farmer, and Zirnbauer for the case of U(N).Comment: LaTeX, 70 pages, Complex Analysis and its Synergies (2016) 2:

    Arithmetical properties of Multiple Ramanujan sums

    Full text link
    In the present paper, we introduce a multiple Ramanujan sum for arithmetic functions, which gives a multivariable extension of the generalized Ramanujan sum studied by D. R. Anderson and T. M. Apostol. We then find fundamental arithmetic properties of the multiple Ramanujan sum and study several types of Dirichlet series involving the multiple Ramanujan sum. As an application, we evaluate higher-dimensional determinants of higher-dimensional matrices, the entries of which are given by values of the multiple Ramanujan sum.Comment: 19 page

    Hall viscosity, orbital spin, and geometry: paired superfluids and quantum Hall systems

    Full text link
    The Hall viscosity, a non-dissipative transport coefficient analogous to Hall conductivity, is considered for quantum fluids in gapped or topological phases. The relation to mean orbital spin per particle discovered in previous work by one of us is elucidated with the help of examples, using the geometry of shear transformations and rotations. For non-interacting particles in a magnetic field, there are several ways to derive the result (even at non-zero temperature), including standard linear response theory. Arguments for the quantization, and the robustness of Hall viscosity to small changes in the Hamiltonian that preserve rotational invariance, are given. Numerical calculations of adiabatic transport are performed to check the predictions for quantum Hall systems, with excellent agreement for trial states. The coefficient of k^4 in the static structure factor is also considered, and shown to be exactly related to the orbital spin and robust to perturbations in rotation invariant systems also.Comment: v2: Now 30 pages, 10 figures; new calculation using disk geometry; some other improvements; no change in result

    Twisted Frobenius-Schur indicators for Hopf algebras

    Get PDF
    The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bump and Ginzburg, building on earlier work of Mackey, have defined versions of these indicators which are twisted by an automorphism of the group. In another direction, Linchenko and Montgomery have defined Frobenius-Schur indicators for semisimple Hopf algebras. In this paper, the authors construct twisted Frobenius-Schur indicators for semisimple Hopf algebras; these include all of the above indicators as special cases and have similar properties.Comment: 12 pages. Minor revision

    Analytic representations with theta functions for systems on ℤ(d) and on .

    Get PDF
    yesAn analytic representation with Theta functions on a torus, for systems with variables in ℤ(d), is considered. Another analytic representation with Theta functions on a strip, for systems with positions in a circle S and momenta in Z, is also considered. The reproducing kernel formalism for these two systems is studied. Wigner and Weyl functions in this language, are also studied

    Crystal constructions in Number Theory

    Full text link
    Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these constructions, and how it allows access to some intricate objects in number theory and related open questions using tools of algebraic combinatorics

    Schur Polynomials and the Yang-Baxter equation

    Get PDF
    We show that within the six-vertex model there is a parametrized Yang-Baxter equation with nonabelian parameter group GL(2)xGL(1) at the center of the disordered regime. As an application we rederive deformations of the Weyl character formule of Tokuyama and of Hamel and King.Comment: Revised introduction; slightly changed reference
    • …
    corecore