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Abstract 

We compute Haar ensemble averages of ratios of random characteristic polynomi-
als for the classical Lie groups K = ON, SON, and USpN. To that end, we start from the 
Clifford–Weyl algebra in its canonical realization on the complex AV of holomorphic 
differential forms for a C-vector space V0. From it we construct the Fock representa-
tion of an orthosymplectic Lie superalgebra osp associated to V0. Particular attention 
is paid to defining Howe’s oscillator semigroup and the representation that partially 
exponentiates the Lie algebra representation of sp ⊂ osp. In the process, by pushing 
the semigroup representation to its boundary and arguing by continuity, we provide a 
construction of the Shale–Weil–Segal representation of the metaplectic group. To deal 
with a product of n ratios of characteristic polynomials, we let V0 = C

n
⊗ C

N where 
C
N is equipped with the standard K-representation, and focus on the subspace A K

V
 of 

K-equivariant forms. By Howe duality, this is a highest-weight irreducible representation 
of the centralizer g of Lie(K) in osp. We identify the K-Haar expectation of n ratios with 
the character of this g-representation, which we show to be uniquely determined by 
analyticity, Weyl-group invariance, certain weight constraints, and a system of differen-
tial equations coming from the Laplace-Casimir invariants of g. We find an explicit solu-
tion to the problem posed by all these conditions. In this way, we prove that the said 
Haar expectations are expressed by a Weyl-type character formula for all integers N ≥ 1. 
This completes earlier work of Conrey, Farmer, and Zirnbauer for the case of UN.

Open Access

© 2016 Huckleberry et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Huckleberry et al.  
Complex Analysis and its Synergies  (2016) 2:1 
DOI 10.1186/s40627-015-0005-3

Table of Contents
1  Background 
 1.1  Comparison with results of other approaches 
 1.2  Howe duality and weight expansion 
 1.3  Group representation and differential equations 
2  Howe dual pairs in the orthosymplectic Lie superalgebra 
 2.1  Notion of Lie superalgebra 
 2.2  Structure of osp(W) 
 2.3  Howe pairs in osp(W) 
 2.4  Clifford–Weyl algebra q(W) 
 2.5  osp(W) inside q(W) 
 2.6  Spinor–oscillator representation 
 2.7  Real structures 

*Correspondence:   
a.huckleberry@jacobs-university.de 
1 Jacobs University, Faculty 
of mathematics and logistics, 
Campus Ring 1, D-28759 Bremen, 
Germany
Full list of author information is 
available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40627-015-0005-3&domain=pdf


Page 2 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

1  Background
In this article we derive an explicit formula for the average

where K is one of the classical compact Lie groups ON , SON, or USpN equipped with 
Haar measure dk of unit mass 

∫
K dk = 1 and

depends on a set of complex parameters t := (eiψ1 , . . . , eiψn , eφ1 , . . . , eφn), which satisfy 
Reφj > 0 for all j = 1, . . . , n. The case of K = UN is handled in [7]. Note that

with �N =
N
2

∑n
j=1(iψj − φj). This means that Z(t, k) is a product of ratios of characteris-

tic polynomials, which explains the title of the article.
The Haar average I(t) can be regarded as the (numerical part of the) character of an 

irreducible representation of a Lie supergroup (g ,G) restricted to a suitable subset of 
a maximal torus of G. The Lie superalgebra g is the Howe dual partner of the compact 
group K in an orthosymplectic Lie superalgebra osp. It is naturally represented on a cer-
tain infinite-dimensional spinor–oscillator module a(V ) —more concretely, the complex 
of holomorphic differential forms on the vector space Cn

⊗ CN—and the irreducible 
representation is that on the subspace a(V )K  of K-equivariant forms.

To even define the character, we must exponentiate the representation of the Lie alge-
bra part of osp on a(V ). This requires going to a completion AV  of a(V ), and can only 

(1.1)I(t) :=

∫

K
Z(t, k) dk

(1.2)Z(t, k) :=

n∏

j=1

Det(e
i
2ψj IdN − e−

i
2ψj k)

Det(e
1
2φj IdN − e−

1
2φj k)

Z(t, k) = e�N
n∏

j=1

Det(IdN − e−iψj k)

Det(IdN − e−φj k)

3  Semigroup representation 
 3.1  The oscillator semigroup 
 3.2  Oscillator semigroup and metaplectic group 
 3.3  Oscillator semigroup representation 
 3.4  Representation of the metaplectic group 
 3.5  Compatibility with Lie algebra representation 
4  Spinor–oscillator character 
 4.1  Background on Lie supergroups and their representations 
 4.2  Character of the spinor–oscillator representation 
 4.3  Identification of the restricted character with I(t) 
5  Proof of the character formula 
 5.1  Properties of the character χ ′ 
 5.2  Derivation of the differential equations 
 5.3  Global GR-invariance and the Weyl group 
 5.4  Formula for χT+ 
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be done partially. Nevertheless, the represented semigroup contains enough structure to 
derive Laplace-Casimir differential equations for its character.

Our explicit formula for I(t) looks exactly like a classical Weyl formula and is derived 
in terms of the roots of the Lie superalgebra g and the Weyl group W. Let us state this 
formula for K = ON, USpN without going into the details of the �-positive even and odd 
roots �+

�,0 and �+

�,1 and the Weyl group W (see Sect. 5.3 for precise formulas). If W� is the 
isotropy subgroup of W fixing the highest weight � = �N , then

To prove this formula we establish certain properties of I(t) which uniquely characterize 
it and are satisfied by the right-hand side. These are a weight expansion of I(t) (see Cor-
ollary 4.1), restrictions on the set of weights (see Corollary 2.3), and the fact that I(t) is 
annihilated by certain invariant differential operators (see Corollary 5.1).

As was stated above, the case K = UN is treated in [7]. Here, we restrict to the com-
pact groups K = ON, K = USpN, and K = SON . The cases K = ON and K = USpN can 
be treated simultaneously. Having established formula (1.3) for K = ON, the following 
argument gives a similar result for K = SON . Let dkO and dkSO be the unit mass Haar 
measures for ON and SON, respectively. The ON-measure (1+ Det k) dkO has unit mass 
on SON and zero mass on O−

N = ON\SON . It is SON-invariant. Now,

with t ′ = (e−iψ1 , eiψ2 , . . . , eiψn , eφ1 , . . . , eφn), since Det(k)Z(t, k) = (−1)NZ(t ′, k).

1.1  Comparison with results of other approaches

To facilitate the comparison with related work, we now present our final results in the 
following explicit form. Let xj := e−iψj and yl := e−φl. Consider first the case of the uni-
tary symplectic group K = USpN (where N ∈ 2N). Then for any pair of non-negative 
integers p, q in the range q − p ≤ N + 1 one directly infers from (1.3) the formula

The sum on the right-hand side is over sign configurations ǫ ≡ (ǫ1, . . . , ǫp) ∈ {±1}p. The 
proof proceeds by induction in p, starting from the result (1.3) for p = q and sending 
xp → 0 to pass from p to p− 1. In published recent work [3, 8] the same formula was 
derived under the more restrictive condition q ≤ N/2. In [3] this unwanted restriction 
on the parameter range came about because the numerator and denominator on the left-
hand side were expanded separately, ignoring the super-symmetric Howe duality (see 
Sect. 2 of the present paper) of the problem at hand.

For K = SON the same induction process starting from (1.3) yields the result

(1.3)I(t) =
∑

[w]∈W/W�

ew(�N )

∏
β∈�+

�,1
(1− e−w(β))

∏
α∈�+

�,0
(1− e−w(α))

(ln t).

ISON (t) =

∫

SON

Z(t, k) dkSO =

∫

ON

Z(t, k)(1+ Det k) dkO

=

∫

ON

Z(t, k) dkO +

∫

ON

Z(t, k)Det(k) dkO = ION (t)+ (−1)N ION (t
′)

∫

USpN

∏p
k=1 Det(1− xk u)∏q
l=1 Det(1− yl u)

du =

∑

ǫ∈{±1}p

∏p
k=1 x

N
2 (1−ǫk )

k

∏q
l=1(1− x

ǫk
k yl)∏

k≤k ′(1− x
ǫk
k x

ǫk′

k ′ )
∏

l<l′(1− ylyl′)
.



Page 4 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

as long as q − p ≤ N − 1. Please note that this includes even the case of the trivial group 
K = SO1 = {Id} with any p = q > 0. For K = ON one has an analogous result where the 
sum on the right-hand side is over ǫ with an even number of sign reversals.

The very same formulas for SON and ON were derived in the recent literature [3, 8] 
but, again, only in the much narrower range q ≤ Int[N/2]. There exist a number of other 
interesting recent works which emphasize the Lie superalgebraic and combinatorial side 
of the picture (see, e.g., [4–6]).

1.2  Howe duality and weight expansion

To find an explicit expression for the integral I(t), we first of all observe that the inte-
grand Z(t, k) is the supertrace of a representation ρ of a semigroup (T1 × T+)× K  on the 
spinor–oscillator module a(V ) (cf. Lemma 4.1). More precisely, we start with the stand-
ard K-representation space CN , the Z2-graded vector space U = U0 ⊕U1 with Us ≃ Cn, 
and the abelian semigroup

of diagonal transformations in GL(U1)×GL(U0). We then consider the vector space 
V := U ⊗ CN which is Z2-graded by Vs = Us ⊗ CN , the infinite-dimensional spinor–
oscillator module a(V ) := ∧(V ∗

1 )⊗ S(V ∗
0 ), and a representation ρ of (T1 × T+)× K  on 

a(V ). We also let V ⊕ V ∗
=: W = W0 ⊕W1 (not the Weyl group).

Averaging the product of ratios Z(t,  k) with respect to the compact group K corre-
sponds to the projection from a(V ) onto the vector space a(V )K  of K-invariants (Corol-
lary 4.1). Now, Howe duality (Proposition 2.2) implies that a(V )K  is the representation 
space for an irreducible highest-weight representation ρ∗ of the Howe dual partner g of 
K in the orthosymplectic Lie superalgebra osp(W ). This representation ρ∗ is constructed 
by realizing g ⊂ osp(W ) as a subalgebra in the space of degree-two elements of the Clif-
ford–Weyl algebra q(W ). Precise definitions of these objects, their relationships, and the 
Howe duality statement can be found in Sect. 2.

Using the decomposition a(V )K = ⊕γ∈Ŵ Vγ into weight spaces, Howe duality leads to 
the weight expansion I(eH ) = STra(V )K eρ∗(H)

=
∑

γ∈Ŵ Bγ eγ (H) for t = eH ∈ T1 × T+ . 
Here STr denotes the supertrace. There are strong restrictions on the set of weights Ŵ . 
Namely, if γ ∈ Ŵ, then γ =

∑n
j=1(imjψj − njφj) and −N

2 ≤ mj ≤
N
2 ≤ nj for all j. The 

coefficients Bγ = STrVγ (Id) are the dimensions of the weight spaces (multiplied by par-
ity). Note that the set of weights of the representation ρ∗ of g on a(V )K  is infinite.

1.3  Group representation and differential equations

Before outlining the strategy for computing our character in the infinite-dimensional set-
ting of representations of Lie superalgebras and groups, we recall the classical situation 
where ρ∗ is an irreducible finite-dimensional representation of a reductive Lie algebra g 
and ρ is the corresponding Lie group representation of the complex reductive group G. 
In that case the character χ of ρ, which automatically exists, is the trace Tr ρ , which is a 

∫

SON

∏p
k=1 Det(1− xk u)∏q
l=1 Det(1− yl u)

du =

∑

ǫ∈{±1}p

∏p
k=1(ǫkxk)

N
2 (1−ǫk )

∏q
l=1(1− x

ǫk
k yl)

∏
k<k ′

(
1− x

ǫk
k x

ǫk′

k ′

)∏
l≤l′

(
1− ylyl′

)

T1 × T+ := {(diag(eiψ1 , . . . , eiψn), diag(eφ1 , . . . , eφn)) | Reφj > 0 , j = 1, . . . , n}
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radial eigenfunction of every Laplace-Casimir operator. These differential equations can 
be completely understood by their behavior on a maximal torus of G.

In our case we must consider the infinite-dimensional irreducible representation ρ∗ of 
the Lie superalgebra g = osp on a(V )K . Casimir elements, Laplace-Casimir operators of 
osp, and their radial parts have been described by Berezin [1]. In the situation U0 ≃ U1 at 
hand we have the additional feature that every osp-Casimir element I can be expressed as 
a bracket I = [∂ , F ] where ∂ is the holomorphic exterior derivative when we view a(V )K  
as the complex of K-equivariant holomorphic differential forms on V0.

To benefit from Berezin’s theory of radial parts, we construct a radial superfunction 
χ which is defined on an open set containing the torus T1 × T+ such that its numerical 
part satisfies numχ(t) = I(t) for all t ∈ T1 × T+. If we had a representation (ρ∗, ρ) of a 
Lie supergroup (osp,G) at our disposal, we could define χ to be its character, i.e.,

Since we do not have such a representation, our idea is to define χ as a character on a 
totally real submanifold M of maximal dimension which contains a real form of T1 × T+ 
and is invariant with respect to conjugation by a real form GR of G, and then to extend χ 
by analytic continuation.

Thinking classically we consider the even part of the Lie superalgebra osp(W0 ⊕W1), 
which is the Lie algebra o(W1)⊕ sp(W0). The real structures at the Lie supergroup level 
come from a real form WR of W. The associated real forms of o(W1) and sp(W0) are the 
real orthogonal Lie algebra o(W1,R) and the real symplectic Lie algebra sp(W0,R). These 
are defined in such a way that the elements in o(W1,R)⊕ sp(W0,R) and iWR are mapped 
as elements of the Clifford–Weyl algebra via the spinor–oscillator representation to anti-
Hermitian operators on a(V ) with respect to a compatibly defined unitary structure. In 
this context we frequently use the unitary representation of the real Heisenberg group 
exp(iW0,R)× U1 on the completion AV  of the module a(V ).

Since ∧(V ∗
1 ) has finite dimension, exponentiating the spinor representation of o(W1,R) 

causes no difficulties. This results in the spinor representation of Spin(W1,R), a 2:1 cover-
ing of the compact group SO(W1,R). So in this case one easily constructs a representa-
tion R1 : Spin(W1,R) → U(a(V )) which is compatible with ρ∗|o(W1,R).

Exponentiating the oscillator representation of sp(W0,R) on the infinite-dimensional 
vector space S(V ∗

0 ) requires more effort. In Sect. 3.4, following Howe [11], we construct 
the Shale–Weil–Segal representation R′

: Mp(W0,R) → U(AV ) of the metaplectic group 
Mp(W0,R) which is the 2:1 covering group of the real symplectic group Sp(W0,R). This is 
compatible with ρ∗|sp(W0,R). Altogether we see that the even part of the Lie superalgebra 
representation integrates to GR = Spin(W1,R)×Z2 Mp(W0,R).

The construction of R′ uses a limiting process coming from the oscillator semigroup 
H̃(Ws

0), which is the double covering of the contraction semigroup H(Ws
0) ⊂ Sp(W0) 

and has Mp(W0,R) in its boundary. Furthermore, we have H̃(Ws
0) = Mp(W0,R)×M 

where M is an analytic totally real submanifold of maximal dimension which contains 
a real form of the torus T+ (see Sect. 3.2). The representation R0 : H̃(Ws

0) → End(AV ) 
constructed in Sect. 3.3 facilitates the definition of the representation R′ and of the char-
acter χ in Sect. 4.2 and Sect. 5.1. It should be underlined that Proposition 3.24 ensures 

χ(g)
?
= STra(V )K ρ(g) e

∑
j ξj ρ∗(�j).



Page 6 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

convergence of the superfunction χ(h), which is defined as a supertrace and exists for all 
h ∈ H̃(Ws

0).
On that basis, the key idea of our approach is to exploit the fact that every Casimir 

invariant I ∈ U(g) is exact in the sense that I = [∂ , F ]. By a standard argument, this 
exactness property implies that every such invariant I vanishes in the spinor–oscilla-
tor representation. This result in turn implies for our character χ the differential equa-
tions D(I)χ = 0 where D(I) is the Laplace-Casimir operator representing I. By drawing 
on Berezin’s theory of radial parts, we derive a system of differential equations which in 
combination with certain other properties ultimately determines χ.

In the case of K = ON the Lie group associated to the even part of the real form of 
the Howe partner g is embedded in a simple way in the full group GR described above. 
It is itself just a lower-dimensional group of the same form. In the case of K = USpN a 
sort of reversing procedure takes places and the analogous real form is USp2n × SO∗

2n. 
Nevertheless, the precise data which are used as input into the series developments, the 
uniqueness theorem, and the final calculations of χ are essentially the same in the two 
cases. Therefore there is no difficulty handling them simultaneously.

2  Howe dual pairs in the orthosymplectic Lie superalgebra
In this chapter we collect some foundational information from representation theory. 
Basic to our work is the orthosymplectic Lie superalgebra, osp, in its realization as the 
space spanned by super-symmetrized terms of degree two in the Clifford–Weyl algebra. 
Representing the latter by its fundamental representation on the spinor–oscillator mod-
ule, one gets a representation of osp and of all Howe dual pairs inside of osp. Roots and 
weights of the relevant representations are described in detail.

2.1  Notion of Lie superalgebra

A Z2-grading of a vector space V over K = R or C is a decomposition V = V0 ⊕ V1 of 
V into the direct sum of two K-vector spaces V0 and V1. The elements in (V0 ∪ V1)\{0} 
are called homogeneous. The parity function | | : (V0 ∪ V1)\{0} → Z2, v ∈ Vs �→ |v| = s , 
assigns to a homogeneous element its parity. We write V ≃ Kp|q if dimK V0 = p and 
dimK V1 = q.

A Lie superalgebra over K is a Z2-graded K-vector space g = g0 ⊕ g1 equipped with a 
bilinear map [ , ] : g× g → g satisfying

1. [gs, gs′ ] ⊂ gs+s′, i.e., |[X ,Y ]| = |X | + |Y | (mod 2) for homogeneous elements X, Y.
2. Skew symmetry: [X ,Y ] = −(−1)|X ||Y |

[Y ,X] for homogeneous X, Y.
3. Jacobi identity, which means that ad(X) = [X , ] : g → g is a (super-)derivation: 

Example 2.1 (gl(V )) Let V = V0 ⊕ V1 be a Z2-graded K-vector space. There is a canon-
ical Z2-grading End(V ) = End(V )0 ⊕ End(V )1 induced by the grading of V:

The bilinear extension of [X ,Y ] := XY − (−1)|X ||Y |YX for homogeneous elements 
X ,Y ∈ End(V ) to a bilinear map [ , ] : End(V )× End(V ) → End(V ) gives End(V ) the 

ad(X) [Y ,Z] = [ad(X)Y ,Z] + (−1)|X ||Y |
[Y , ad(X)Z].

End(V )s := {X ∈ End(V ) | ∀s′ ∈ Z2 : X(Vs′) ⊂ Vs+s′ }.
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structure of a Lie superalgebra, namely gl(V ). The Jacobi identity in this case is a direct 
consequence of the associativity (XY )Z = X(YZ) and the definition of [X, Y].

In fact, for every Z2-graded associative algebra A  the bracket [ , ] : A ×A → A  
defined by [X ,Y ] = XY − (−1)|X ||Y |YX satisfies the Jacobi identity.

Example 2.2 (osp(V ⊕ V ∗)) Let V = V0 ⊕ V1 be a Z2-graded K-vector space and put 
W := V ⊕ V ∗. The Z2-grading of V induces a Z2-grading W = W0 ⊕W1 in the obvious 
manner: W0 = V0 ⊕ V ∗

0  and W1 = V1 ⊕ V ∗
1 . Then consider the canonical alternating 

bilinear form A on W0,

and the canonical symmetric bilinear form S on W1,

The orthosymplectic form of W is the non-degenerate bilinear form Q : W ×W → K 
defined as the orthogonal sum Q = A+ S:

Note the exchange symmetry Q(w,w′) = −(−1)|w||w
′|Q(w′,w) for w,w′

∈ W0 ∪W1.
Given Q, define a complex linear bijection τ : End(W ) → End(W ) by the equation

for all w,w′
∈ W0 ∪W1. It is easy to check that τ has the property

which implies that τ is an involutory automorphism of the Lie superalgebra gl(W ) with 
bracket [X ,Y ] = XY − (−1)|X ||Y |YX. Hence the subspace osp(W ) ⊂ End(W ) of τ-fixed 
points is closed w.r.t. that bracket; it is called the (complex) orthosymplectic Lie superal-
gebra of W.

Example 2.3 (Jordan–Heisenberg algebra) Using the notation of Example 2.2, con-
sider the vector space W̃ := W ⊕K and take it to be Z2-graded by W̃0 = W0 ⊕K and 
W̃1 = W1. Define a bilinear mapping [ , ] : W̃ × W̃ → W̃  by

By the basic properties of the orthosymplectic form Q, the vector space W̃  equipped 
with this bracket is a Lie superalgebra—the so-called Jordan–Heisenberg algebra. Note 
that W̃  is two-step nilpotent, i.e., [W̃ , [W̃ , W̃ ]] = 0.

2.1.1  Supertrace

Let V = V0 ⊕ V1 be a Z2-graded K-vector space, and recall the decomposition 
End(V ) =

⊕
s, t Hom(Vs ,Vt). For X ∈ End(V ), we denote by X =

∑
s, t X ts the corre-

sponding decomposition of an operator. The supertrace on V is the linear function

A : W0 ×W0 → K , (v + ϕ , v′ + ϕ′) �→ ϕ′(v)− ϕ(v′),

S : W1 ×W1 → K , (v + ϕ , v′ + ϕ′) �→ ϕ′(v)+ ϕ(v′).

Q(w0 + w1,w
′
0 + w′

1) = A(w0,w
′
0)+ S(w1,w

′
1) (ws ,w

′
s ∈ Ws).

(2.1)Q(τ (X)w,w′)+ (−1)|X ||w|Q(w,Xw′) = 0

τ (XY ) = −(−1)|X ||Y |τ (Y )τ (X) ,

[K , W̃ ] = [W̃ ,K] = 0 , [W ,W ] ⊂ K , [w,w′
] = Q(w,w′) (w,w′

∈ W ).

STr : End(V ) → K , X �→ TrX00 − TrX11 =

∑
s
(−1)sTrXss.
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(If dimV = ∞, then usually the domain of definition of STr must be restricted.)
An ad-invariant bilinear form on a Lie superalgebra g = g0 ⊕ g1 over K is a bilinear 

mapping B : g× g → K with the properties

1. g0 and g1 are B-orthogonal to each other;
2. B is symmetric on g0 and skew on g1;
3. B([X ,Y ],Z) = B(X , [Y ,Z]) for all X ,Y ,Z ∈ g.

We will repeatedly use the following direct consequences of the definition of STr.

Lemma 2.1 If g is a Lie superalgebra in End(V ), the trace form B(X ,Y ) = STr (XY ) is 
an ad-invariant bilinear form. One has STr [X ,Y ] = 0.

Recalling the setting of Example 2.2, note that the supertrace for W = V ⊕ V ∗ is odd 
under the gl-automorphism τ fixing osp(W ), i.e., STrW ◦ τ = −STrW . It follows that 
STrWX = 0 for any X ∈ osp(W ). Moreover, STrW (X1X2 · · ·X2n+1) = 0 for any product 
of an odd number of osp-elements.

2.1.2  Universal enveloping algebra

Let g be a Lie superalgebra with bracket [ , ]. The universal enveloping algebra U(g) is 
defined as the quotient of the tensor algebra T(g) = ⊕

∞
n=0T

n(g) by the two-sided ideal 
J(g) generated by all combinations

for homogeneous X ,Y ∈ T1(g) ≡ g. If Un(g) is the image of Tn(g) := ⊕
n
k=0T

k(g) 
under the projection T(g) → U(g) = T(g)/J(g), the algebra U(g) is filtered by 
U(g) = ∪

∞
n=0Un(g). The Z2-grading g = g0 ⊕ g1 gives rise to a Z2-grading of T(g) by

and this in turn induces a canonical Z2-grading of U(g).
One might imagine introducing various bracket operations on T(g) and/or U(g) . 

However, in view of the canonical Z2-grading, the natural bracket operation to use 
is the supercommutator, which is the bilinear map T(g)× T(g) → T(g) defined by 
{a, b} := ab− (−1)|a||b|ba for homogeneous elements a, b ∈ T(g). (For the time being, 
we use a different symbol { , } for better distinction from the bracket [ , ] on g.) Since by 
the definition of J(g) one has

the supercommutator descends to a well-defined map { , } : U(g)× U(g) → U(g).

Lemma 2.2 If g is a Lie superalgebra, the supercommutator { , } gives U(g) the structure 
of another Lie superalgebra in which {Un(g),Un′(g)} ⊂ Un+n′−1(g).

X ⊗ Y − (−1)|X ||Y |Y ⊗ X − [X ,Y ]

|X1 ⊗ X2 ⊗ · · · ⊗ Xn| =

∑n

i=1
|Xi| (for homogenous Xi ∈ g),

{T(g), J(g)} = {J(g),T(g)} ⊂ J(g),
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Proof Compatibility with the Z2-grading, skew symmetry, and Jacobi identity are prop-
erties of { , } that are immediate at the level of the tensor algebra T(g). They descend to 
the corresponding properties at the level of U(g) by the definition of the two-sided ideal 
J(g). Thus U(g) with the bracket { , } is a Lie superalgebra.

To see that {Un(g),Un′(g)} is contained in Un+n′−1(g), notice that this property holds 
true for n = n′ = 1 by the defining relations J(g) ≡ 0 of U(g). Then use the associative 
law for U(g) to verify the formula

for homogeneous a, b, c ∈ U(g). The claim now follows by induction on the degree of the 
filtration U(g) = ∪

∞
n=0Un(g).  �

By definition, the supercommutator of U(g) and the bracket of g agree at the linear 
level: {X ,Y } ≡ [X ,Y ] for X ,Y ∈ g. It is therefore reasonable to drop the distinction in 
notation and simply write [ , ] for both of these product operations. This we now do.

For future use, note the following variant of the preceding formula: if Y1, . . . ,Yk ,X are 
any homogeneous elements of g, then

which expresses the supercommutator in U(g) by the bracket in g.

2.2  Structure of osp(W)

For a Z2-graded K-vector space V = V0 ⊕ V1 let W = V ⊕ V ∗
= W0 ⊕W1 as in Exam-

ple 2.2. The orthogonal Lie algebra o(W1) is the Lie algebra of the Lie group O(W1) of K
-linear transformations of W1 that leave the non-degenerate symmetric bilinear form S 
invariant. This means that X ∈ End(W1) is in o(W1) if and only if

Similarly, the symplectic Lie algebra sp(W0) is the Lie algebra of the automorphism 
group Sp(W0) of W0 equipped with the non-degenerate alternating bilinear form A: 

For the next statement, recall the definition of the orthosymplectic Lie superalgebra 
osp(W ) and the decomposition osp(W ) = osp(W )0 ⊕ osp(W )1.

Lemma 2.3 As Lie algebras resp. vector spaces,

Proof The first isomorphism follows directly from the definitions. For the second iso-
morphism, decompose X ∈ osp(W )1 as X = X01 + X10 where X01 ∈ Hom(W1,W0) and 
X10 ∈ Hom(W0 ,W1). Then

{a, bc} = abc − (−1)|a|(|b|+|c|)bca = {a, b}c + (−1)|a||b|b{a, c}

(2.2)[Y1 · · ·Yk , X] =

k∑

i=1

(−1)
|X |

∑k
j=i+1 |Yj | Y1 · · ·Yi−1 [Yi ,X]Yi+1 · · ·Yk ,

∀w,w′
∈ W1 : S(Xw,w′)+ S(w,Xw′) = 0.

sp(W0) = {X ∈ End(W0) | ∀w,w
′
∈ W0 : A(Xw,w′)+ A(w,Xw′) = 0}.

osp(W )0 ≃ o(W1)⊕ sp(W0) , osp(W )1 ≃ W1 ⊗W ∗
0 .

osp(W )1 = {X10 + X01 ∈ End(W )1 | ∀ws ∈ Ws : S(X10w0 ,w1)+ A(w0 ,X01w1) = 0}.
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Since both S and A are non-degenerate, the component X01 is determined by the compo-
nent X10, and one therefore has osp(W )1 ≃ Hom(W0 ,W1) ≃ W1 ⊗W ∗

0 .  �

We now review how sp(W0) and o(W1) decompose for our case Ws = Vs ⊕ V ∗
s . For 

that purpose, if U is a vector space with dual vector space U∗, let Sym(U ,U∗) and 
Alt(U ,U∗) denote the symmetric resp. alternating linear maps from U to U∗.

Lemma 2.4 As vector spaces,

Proof There is a canonical decomposition

for s = 0, 1. Let s = 1 and write the corresponding decomposition of X ∈ End(W1) as

Substituting w = v + ϕ and w′
= v′ + ϕ′, the defining condition S(Xw,w′) = −S(w,Xw′) 

for X ∈ o(W1) then transcribes to

for all v, v′ ∈ V1 and ϕ,ϕ′
∈ V ∗

1 . Thus D = −At, and the maps B,C are alternating. This 
already proves the statement for the case of o(W1).

The situation for sp(W0) is identical but for a sign change: the symmetric form S is 
replaced by the alternating form A, and this causes the parity of B,C to be reversed.  �

By adding up dimensions, Lemmas 2.3 and 2.4 entail the following consequence.

Corollary 2.1 As a Z2-graded vector space, osp(V ⊕ V ∗) is isomorphic to Kp|q where 
p = d0(2d0 + 1)+ d1(2d1 − 1), q = 4d0d1, and ds = dimVs.

There exists another way of thinking about osp(W ), which will play a key role in the 
sequel. To define it and keep the sign factors consistent and transparent, we need to be 
meticulous about our ordering conventions. Hence, if v ∈ V  is a vector and ϕ ∈ V ∗ is a 
linear function, we write the value of ϕ on v as

Based on this notational convention, if V is a Z2-graded vector space and X ∈ End(V ) is 
a homogeneous operator, we define the supertranspose Xst

∈ End(V ∗) of X by

This definition differs from the usual transpose by a change of sign in the case when X 
has a component in Hom(V1,V0). From it, it follows directly that the negative super-
transpose gl(V ) → gl(V ∗), X �→ −Xst is an isomorphism of Lie superalgebras:

o(W1) ≃ End(V1)⊕ Alt(V1,V
∗
1 )⊕ Alt(V ∗

1 ,V1) ,

sp(W0) ≃ End(V0)⊕ Sym(V0 ,V
∗
0 )⊕ Sym(V ∗

0 ,V0).

End(Ws) = End(Vs)⊕Hom(V ∗
s ,Vs)⊕Hom(Vs ,V

∗
s )⊕ End(V ∗

s )

X = A⊕ B⊕ C⊕ D.

ϕ′(Av) = −(Dϕ′)(v) , (Cv)(v′) = −(Cv′)(v) , ϕ′(Bϕ) = −ϕ(Bϕ′),

ϕ(v) ≡ �v,ϕ�.

�v,Xstϕ� := (−1)|X ||v|�Xv,ϕ� (v ∈ V0 ∪ V1, ϕ ∈ V ∗).

−[X ,Y ]
st
= [−Xst,−Y st

].
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The modified notion of transpose goes hand in hand with a modified notion of what it 
means for an operator in Hom(V ,V ∗) or Hom(V ∗,V ) to be symmetric. Thus, define the 
subspace Sym(V ∗,V ) ⊂ Hom(V ∗,V ) to consist of the elements, say B, which are sym-
metric in the Z2-graded sense:

By the same principle, define Sym(V ,V ∗) ⊂ Hom(V ,V ∗) as the set of solutions C of

To make the connection with the decomposition of Lemma 2.3 and 2.4, notice that

and similar for the corresponding intersections involving Sym(V ∗,V ).
Next, expressing the orthosymplectic form Q of W = V ⊕ V ∗ as

and writing out the conditions resulting from Q(Xw,w′)+ (−1)|X ||w|Q(w,Xw′) = 0 for 
the case of X ≡ B ∈ Hom(V ∗,V ) and X ≡ C ∈ Hom(V ,V ∗), one sees that

This situation is summarized in the next statement.

Lemma 2.5 The orthosymplectic Lie superalgebra of W = V ⊕ V ∗ decomposes as

where g(+2)
:= Sym(V ,V ∗), and g(−2)

:= Sym(V ∗,V ), and

The decomposition of Lemma 2.5 can be regarded as a Z-grading of osp(W ). By the 
‘block’ structure inherited from W = V ⊕ V ∗, this decomposition is compatible with the 
bracket [ , ] :

where g(m+m′)
≡ 0 if m+m′ /∈ {±2, 0}. It follows that each of the three subspaces g(+2), 

g(−2), and g(0) is a Lie superalgebra, the first two with vanishing bracket.

Lemma 2.6 The embedding End(V ) → End(V )⊕ End(V ∗) by A �→ A⊕ (−Ast) pro-
jected to osp(W ) is an isomorphism of Lie superalgebras gl(V ) → g(0).

Proof Since the negative supertranspose A �→ −Ast is a homomorphism of Lie super-
algebras, so is our embedding A �→ A⊕ (−Ast). This map is clearly injective. To see that 
it is surjective, consider any homogeneous X = A⊕ D ∈ End(V )⊕ End(V ∗) viewed as 

(2.3)∀ϕ,ϕ′
∈ V ∗

0 ∪ V ∗
1 : �Bϕ,ϕ′

� = �Bϕ′,ϕ� (−1)|ϕ||ϕ
′|.

(2.4)∀ v, v′ ∈ V0 ∪ V1 : �v,Cv′� = �v′,Cv� (−1)|v||v
′|+|v|+|v′|.

Sym(V ,V ∗) ∩Hom(Vs ,V
∗
s ) =

{
Sym(V0 ,V

∗
0 ) s = 0,

Alt(V1,V
∗
1 ) s = 1,

Q(v + ϕ, v′ + ϕ′) = �v,ϕ′
� − (−1)|v

′||ϕ|
�v′,ϕ�,

osp(W ) ∩Hom(V ,V ∗) = Sym(V ,V ∗) , osp(W ) ∩Hom(V ∗,V ) = Sym(V ∗,V ).

osp(W ) = g(−2)
⊕ g(0) ⊕ g(+2) ,

g(0) := (End(V )⊕ End(V ∗)) ∩ osp(W ) .

[g(m), g(m
′)
] ⊂ g(m+m′),
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an operator in End(W ). The condition for X to be in osp(W ) is (2.1). To get a non-trivial 
condition, choose (w,w′) = (v,ϕ) or (w,w′) = (ϕ, v). The first choice gives

Valid for all v ∈ V0 ∪ V1 and ϕ ∈ V ∗, this implies that D = −Ast. The second choice leads 
to the same conclusion. Thus X = A⊕ D is in osp(W ) if and only if D = −Ast.  �

In the following subsections we will often write osp(W ) ≡ osp for short.

2.2.1  Roots and root spaces

A Cartan subalgebra of a Lie algebra g0 is a maximal commutative subalgebra h ⊂ g0 
such that g0 (or its complexification if g0 is a real Lie algebra) has a basis consisting of 
eigenvectors of ad(H) for all H ∈ h. Recall that |[X ,Y ]| = |X | + |Y | for homogene-
ous elements X, Y of a Lie superalgebra g. From the vantage point of decomposing g by 
eigenvectors or root spaces, it is therefore reasonable to call a Cartan subalgebra of g0 a 
Cartan subalgebra of g. We will see that X ∈ osp1 and [X ,H ] = 0 for all H ∈ h ⊂ osp0 
imply X = 0, i.e., there exists no commutative subalgebra of osp that properly contains a 
Cartan subalgebra. Lie superalgebras with this property are called of type I in [1].

Let us determine a Cartan subalgebra and the corresponding root space decomposi-
tion of osp. For s, t = 0, 1 choose bases {es,1 , . . . , es, ds} of Vs and associated dual bases 
{ft,1, . . . , ft, dt } of V ∗

t . Then for j = 1, . . . , ds and k = 1, . . . , dt define rank-one operators 
Es,j ; t, k by the equation Es,j ; t, k(eu,l) = es,j δt,u δk ,l for all u = 0, 1 and l = 1, . . . , du. These 
form a basis of End(V ), and by Lemma 2.6 the operators

form a basis of g(0). Similarly, let bases of Hom(V ∗,V ) and Hom(V ,V ∗) be defined by

for index pairs in the appropriate range. Then by Lemma 2.5 and Eqs. (2.3, 2.4) the subal-
gebras g(−2) and g(2) are generated by the sets of operators

Since osp0 ≃ o(W1)⊕ sp(W0), a Cartan subalgebra of osp is the direct sum of a Car-
tan subalgebra of o(W1) and a Cartan subalgebra of sp(W0). Letting h be the span of the 
diagonal operators

one has that h is a Cartan subalgebra of osp. Indeed, if {ϑsj} denotes the basis of h∗ dual to 
{Hsj}, inspection of the adjoint action of h on osp gives the following result.

Q(Xv,ϕ)+ (−1)|X ||v|Q(v,Xϕ) = �Av,ϕ� + (−1)|A||v|�v,Dϕ� = 0.

X
(0)
sj, tk := Es,j ; t, k ⊕ (−Es,j ; t, k)

st

Fs,j ; t, k(fu,l) = es,j δt,u δk ,l , F̃s,j ; t, k(eu,l) = fs,j δt,u δk ,l ,

X
(−2)
sj, tk := Fs,j ; t, k + Ft, k ; s,j (−1)|s||t|,

X
(2)
sj, tk := F̃s,j ; t, k + F̃t, k ; s,j (−1)|s||t|+|s|+|t| .

Hsj := X
(0)
sj, sj (s = 0, 1; j = 1, . . . , ds) ,
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Lemma 2.7 The operators X (m)

sj , tk are eigenvectors of ad(H) for all H ∈ h :

A root of a Lie superalgebra g is called even if its root space is in g0, it is called odd if its 
root space is in g1. We denote by �0 and �1 the set of even roots and the set of odd roots, 
respectively. For g = osp we have

2.2.2  Casimir elements

As before, let g = g0 ⊕ g1 be a Lie superalgebra, and let U(g) = ∪
∞
n=0Un(g) be its uni-

versal enveloping algebra. Denote the symmetric algebra of g0 by S(g0) and the exterior 
algebra of g1 by ∧(g1). The Poincaré–Birkhoff–Witt theorem for Lie superalgebras states 
that for each n there is a bijective correspondence

The collection of inverse maps lift to a vector-space isomorphism,

called the super-symmetrization mapping. In other words, given a homogeneous 
basis {e1, . . . , ed} of g, each element x ∈ U(g) can be uniquely represented in the form 
x =

∑
n

∑
i1,..., in

xi1,..., in ei1 · · · ein with super-symmetrized coefficients, i.e.,

The isomorphism ∧(g1)⊗ S(g0) ≃ U(g) gives U(g) a Z-grading (by the degree n).
Now recall that U(g) comes with a canonical bracket operation, the supercommutator 

[ , ] : U(g)× U(g) → U(g). An element X ∈ U(g) is said to lie in the center of U(g), and 
is called a Casimir element, iff [X ,Y ] = 0 for all Y ∈ U(g). By the formula (2.2), a neces-
sary and sufficient condition for that is [X ,Y ] = 0 for all Y ∈ g.

In the case of g = osp, for every ℓ ∈ N there is a Casimir element Iℓ of degree 2ℓ, which 
is constructed as follows. Consider the bilinear form B : osp× osp → K given by the 
supertrace (in some representation), B(X ,Y ) := STr (XY ). Recall that this form is ad
-invariant, which is to say that B([X ,Y ],Z) = B(X , [Y ,Z]) for all X ,Y ,Z ∈ g.

Taking the supertrace in the fundamental representation of osp, the form B is non-
degenerate, and therefore, if e1, . . . , ed is a homogeneous basis of osp, there is another 
homogeneous basis ẽ1, . . . , ẽd of osp so that B(̃ei , ej) = δij. Note |̃ei| = |ei| and put

[H ,X
(m)

sj , tk ] =





(ϑsj − ϑtk)(H)X
(m)

sj , tk m = 0,

(ϑsj + ϑtk)(H)X
(m)

sj , tk m = −2,

(−ϑsj − ϑtk)(H)X
(m)

sj , tk m = 2 .

�0 = {±ϑ1j ± ϑ1k , ±ϑ0j ± ϑ0l | j < k , j ≤ l}, �1 = {±ϑ1j ± ϑ0k}.

Un(g)/Un−1(g)
∼
→

∑
k+l=n

∧
k(g1)⊗ Sl(g0).

∧(g1)⊗ S(g0)
∼
→U(g),

xi1,..., il , il+1,..., in = (−1)
|eil ||eil+1

|
xi1, ..., il+1, il , ..., in (1 ≤ l < n).

(2.5)Iℓ :=

d∑

i1, ..., i2ℓ=1

ẽi1 · · · ẽi2ℓ STr (ei2ℓ · · · ei1) ∈ U(osp).
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(Notice that, in view of the remark following Lemma 2.1, there is no point in making the 
same construction with an odd number of factors.)

Lemma 2.8 For all ℓ ∈ N the element Iℓ is Casimir, and |Iℓ| = 0.

Proof By specializing the formula (2.2) to the present case,

Now if [̃ei ,X] =
∑

j Xij ẽj then from ad-invariance, B([̃ei ,X], ej) = Xij = B(̃ei , [X , ej]), 
one has [X , ej] =

∑
i ei Xij. Using this relation to transfer the ad(X)-action from ẽik to eik, 

and reading the formula (2.2) backwards, one obtains

Since the supertrace of any bracket vanishes, one concludes that [Iℓ ,X] = 0.
The other statement, |Iℓ| = 0, follows from |̃ei| = |ei|, the additivity of the Z2-degree 

and the fact that STr (a) = 0 for any odd element a ∈ U(g).  �
We now describe a useful property enjoyed by the Casimir elements Iℓ of osp(V ⊕ V ∗) 

in the special case of isomorphic components V0 ≃ V1. Recalling the notation of Sect. 
2.2.1, let ∂ :=

∑
j X

(0)
0j,1j and ∂̃ := −

∑
j X

(0)
1j,0j. These are odd elements of osp. Notice that 

the bracket C := [∂ , ∂̃] = −
∑

s,j Hsj is in the Cartan algebra of osp. From [∂ , ∂] = 2 ∂2 = 0 
and the Jacobi identity one infers that

By the same argument, [∂̃ ,C] = 0. One also sees that C2
= Id.

Now define Fℓ to be the following odd element of U(osp):

Lemma 2.9 Let osp(V ⊕ V ∗) be the orthosymplectic Lie superalgebra for a Z2-graded 
vector space V with isomorphic components V0 ≃ V1. Then for all ℓ ∈ N the Casimir ele-
ment Iℓ is expressible as a bracket: Iℓ = [∂ , Fℓ].

Proof By the same argument as in the proof of Lemma 2.8,

Using the relations [∂ ,C] = 0 and C2
= Id, one has for any a ∈ U(osp) that

where the second equality sign is from STr (c, [b, a]) = STr ([c, b] a). The statement of 
the lemma now follows on setting a = ei2ℓ · · · ei1.  �

[Iℓ , X] =
∑ 2ℓ∑

k=1

(−1)
|X |(|̃eik+1

|+...+|̃ei2ℓ |)ẽi1 · · · ẽik−1
[̃eik ,X] ẽik+1

· · · ẽi2ℓ STr (ei2ℓ · · · ei1) .

[Iℓ , X] =
∑

ẽi1 · · · ẽi2ℓ STr ([X , ei2ℓ · · · ei1 ]).

[∂ ,C] = [[∂ , ∂], ∂̃] − [∂ , [∂ , ∂̃]] = −[∂ ,C] = 0.

Fℓ = −

d∑

i1, ..., i2ℓ=1

ẽi1 · · · ẽi2ℓ STr
(
ei2ℓ · · · ei1 ∂̃C

)
.

[∂ , Fℓ] = −

∑
ẽi1 · · · ẽi2ℓ STr ([∂ , ei2ℓ · · · ei1 ] ∂̃C).

−STr ([∂ , a] ∂̃C) = STr (∂̃C [∂ , a]) = STr ([∂̃ , ∂]C a) = STr (C2a) = STr (a),
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As we shall see in Sect. 5.1.3, Lemma 2.9 has the drastic consequence that all osp
-Casimir elements Iℓ are zero in a certain class of representations of osp(V ⊕ V ∗) for 
V0 ≃ V1.

2.3  Howe pairs in osp(W)

In the present context, a pair (h, h′) of subalgebras h, h′ ⊂ g of a Lie superalgebra g is 
called a dual pair whenever h′ is the centralizer of h in g and vice versa. In this subsec-
tion, let K = C.

Given a Z2-graded complex vector space U = U0 ⊕U1 we let V := U ⊗ CN , where 
CN is equipped with the standard representation of GL(CN ), O(CN ), or Sp(CN ), as the 
case may be. As a result, the Lie algebra k of whichever group is represented on CN is 
embedded in osp(V ⊕ V ∗). We will now describe the dual pairs (h, k) in osp(W ) for 
W = V ⊕ V ∗. These are known as dual pairs in the sense of R. Howe.

Let us begin by recalling that for any representation ρ : K → GL(E) of a group K on 
a vector space E, the dual representation ρ∗

: K → GL(E∗) on the linear forms on E is 
given by (ρ(k)ϕ)(x) = ϕ(ρ(k)−1x). By this token, every representation ρ : K → GL(CN ) 
induces a representation ρW = (Id⊗ ρ)× (Id⊗ ρ∗) of K on W = V ⊕ V ∗.

Lemma 2.10 Let ρ : K → GL(CN ) be any representation of a Lie group K . If 
V = U ⊗ CN for a Z2-graded complex vector space U = U0 ⊕U1, the induced represen-
tation ρW ∗(k) of the Lie algebra k of K on W = V ⊕ V ∗ is a subalgebra of osp(W )0.

Proof The K-action on CN
⊗ (CN )∗ by z ⊗ ζ �→ ρ(k)z ⊗ ρ∗(k)ζ preserves the canoni-

cal pairing z ⊗ ζ �→ ζ(z) between CN and (CN )∗. Consequently, the K-action on V ⊗ V ∗ 
by (Id⊗ ρ)⊗ (Id⊗ ρ∗) preserves the canonical pairing V ⊗ V ∗

→ C. Since the ortho-
symplectic form Q : W ×W → C uses nothing but that pairing, it follows that

Passing to the Lie algebra level one obtains ρW ∗(k) ⊂ osp(W ). The operator ρW (k) pre-
serves the Z2-grading of W; therefore one actually has ρW ∗(k) ⊂ osp(W )0.  �

Let us now assume that the complex Lie group K is defined by a non-degenerate bilin-
ear form B : CN

× CN
→ C in the sense that

We then have a canonical isomorphism ψ : CN
→ (CN )∗ by z �→ B(z , ), and an isomor-

phism � : (U ⊕ U∗)⊗ CN
→ W  by (u+ ϕ)⊗ z �→ u⊗ z + ϕ ⊗ ψ(z).

Lemma 2.11 ρW (k) = � ◦ (Id⊗ k) ◦�−1 for all k ∈ K .

Proof If u ∈ U , ϕ ∈ U∗, and z ∈ CN , then by the definition of � and ρW (k),

Since B is K-invariant, one has ψ(z)k−1
= ψ(kz), and therefore

Q(ρW (k)w , ρW (k)w′) = Q(w,w′) (for all w,w′
∈ W ) .

K = {k ∈ GL(CN ) | ∀z , z′ ∈ C
N
: B(kz , kz′) = B(z , z′)} .

ρW (k)�((u+ ϕ)⊗ z) = u⊗ kz + ϕ ⊗ ψ(z)k−1.

u⊗ kz + ϕ ⊗ ψ(z)k−1
= u⊗ kz + ϕ ⊗ ψ(kz) = �((Id⊗ k)((u+ ϕ)⊗ z)).
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Thus ρW (k) ◦� = � ◦ (Id⊗ k). �

Let us now examine what happens to the orthosymplectic form Q on W when it is 
pulled back by the isomorphism � to a bilinear form �∗Q on (U ⊕ U∗)⊗ CN

:

By definition, ψ(z)(z′) = B(z , z′), and writing B(z , z′) = (−1)δB(z′, z) where δ = 0 if B is 
symmetric and δ = 1 if B is alternating, we obtain

In view of this, let Ũ denote the vector space U = U0 ⊕U1 with the twisted Z2-grading, 
i.e., Ũs := Us+1 (s ∈ Z2). Moreover, notice that � determines an embedding

whose restriction to End(U ⊕U∗)⊗ {Id} → End(W ) is an injective homomorphism.
In the following we often write O(CN ) ≡ ON and Sp(CN ) ≡ SpN for short.

Corollary 2.2 For K = ON and K = SpN , the map X �→ � ◦ (X ⊗ Id) ◦�−1 defines a 
Lie superalgebra embedding into osp(W ) of osp(U ⊕U∗) resp. osp(Ũ ⊕ Ũ∗).

Proof For K = ON the bilinear form B of CN is symmetric and the bilinear form Q of 
W pulls back—see (2.6)—to the standard orthosymplectic form of U ⊕U∗.

For K = SpN , the form B is alternating. Its pullback, the orthosymplectic form of 
U ⊕U∗ twisted by the sign factor (−1)δ, is restored to standard form by switching to the 
Z2-graded vector space Ũ ⊕ Ũ∗ with the twisted Z2-grading.  �

To go further, we need a statement concerning HomG(V1,V2), the space of G-equivari-
ant homomorphisms between two modules V1 and V2 for a group G.

Lemma 2.12 Let X1 ,X2 ,Y1 ,Y2 be finite-dimensional vector spaces all of which are rep-
resentation spaces for a group G. If the G-action on X1 and X2 is trivial, then

Proof  Hom(X1 ⊗ Y1 ,X2 ⊗ Y2) is canonically isomorphic to X∗
1 ⊗ Y ∗

1 ⊗ X2 ⊗ Y2 as a 
G-representation space, with G-equivariant maps corresponding to G-invariant tensors. 
Since the G-action on X∗

1 ⊗ X2 is trivial, one sees that HomG(X1 ⊗ Y1 ,X2 ⊗ Y2) is iso-
morphic to the tensor product of X∗

1 ⊗ X2 ≃ Hom(X1,X2) with the space of G-invari-
ants in Y ∗

1 ⊗ Y2. The latter in turn is isomorphic to HomG(Y1,Y2). �

Proposition 2.1 Writing gN ≡ g(CN ) for g = gl, o, sp, the following pairs are dual pairs 
in osp(W ) : (gl(U), glN ), (osp(U ⊕U∗), oN ), (osp(Ũ ⊕ Ũ∗), spN ).

Proof Here we calculate the centralizer of k in osp(W ) for each of the three cases 
k = glN, oN, spN and refer the reader to [10] for the remaining details.

Since both V ⊂ W  and V ∗
⊂ W  are K-invariant subspaces, EndK (W ) decomposes as

�∗Q((u+ ϕ)⊗ z , (u′ + ϕ′)⊗ z′) = ϕ′(u) ψ(z′)(z)− (−1)|u
′||ϕ|ϕ(u′) ψ(z)(z′).

(2.6)�∗Q((u+ ϕ)⊗ z , (u′ + ϕ′)⊗ z′) = (ϕ′(u)− (−1)|u
′||ϕ|+δϕ(u′))B(z′, z).

End(U ⊕ U∗)⊗ End(CN ) → End(W ), X ⊗ k �→ � ◦ (X ⊗ k) ◦�−1,

HomG(X1 ⊗ Y1 ,X2 ⊗ Y2) ≃ Hom(X1 ,X2)⊗HomG(Y1 ,Y2).



Page 17 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

By Schur’s lemma, EndK (CN ) ≃ C, and therefore Lemma 2.12 implies

By the same reasoning, EndK (V ∗) = End(U∗). Applying Lemma 2.12 to the two remain-
ing summands, we obtain

plus the same statement where each vector space is replaced by its dual.
If K = GL(CN ) ≡ GLN , then HomK (C

N ,CN ∗
) = HomK (C

N ∗
,CN ) = {0}. Hence,

for W = U ⊗ CN
⊕U∗

⊗ CN ∗ is an isomorphism. This means that the centralizer of glN 
in osp(W ) is the intersection �(End(U)⊕ End(U∗)) ∩ osp(W ), which can be identified 
with End(U) = gl(U). Thus we have the first dual pair, (gl(U), glN ).

In the case of K = ON, the discussion is shortened by recalling Lemma 2.11 and the 
K-equivariant isomorphism � : (U ⊕ U∗)⊗ CN

→ W . By Schur’s lemma, these imply 
EndK (W ) ≃ End(U ⊕U∗). From Corollary 2.2 it then follows that the intersection 
osp(W ) ∩ EndK (W ) is isomorphic as a Lie superalgebra to osp(U ⊕ U∗). Passing to the 
Lie algebra level for K, we get the second dual pair, (osp(U ⊕U∗), oN ).

Finally, if K = SpN , the situation is identical except that Corollary 2.2 com-
pels us to switch to the Z2-twisted structure of orthosymplectic Lie superalgebra in 
EndK (W ) ≃ End(U ⊕U∗). This gives us the third dual pair, (osp(Ũ ⊕ Ũ∗), spN ).  �

2.4  Clifford–Weyl algebra q(W)

Let K = C or K = R (in this subsection the choice of number field again is immaterial) 
and recall from Example 2.3 the definition of the Jordan–Heisenberg Lie superalge-
bra W̃ = W ⊕K, where W = W0 ⊕W1 is a Z2-graded vector space with components 
W1 = V1 ⊕ V ∗

1  and W0 = V0 ⊕ V ∗
0 . The universal enveloping algebra of the Jordan–

Heisenberg Lie superalgebra is called the Clifford–Weyl algebra (or quantum algebra). 
We denote it by q(W ) ≡ U(W̃ ).

Equivalently, one defines the Clifford–Weyl algebra q(W ) as the associative algebra 
generated by W̃ = W ⊕K subject to the following relations for all w,w′

∈ W0 ∪W1 :

In particular, w0 w1 = w1 w0 for all w0 ∈ W0 and w1 ∈ W1. Reordering by this commu-
tation relation defines an isomorphism of associative algebras q(W ) ≃ c(W1)⊗w(W0) , 
where the Clifford algebra c(W1) is generated by W1 ⊕K with the relations 
ww′

+ w′w = S(w,w′) for w,w′
∈ W1, and the Weyl algebra w(W0) is generated by 

W0 ⊕K with the relations ww′
− w′w = A(w,w′) for w,w′

∈ W0.
As a universal enveloping algebra the Clifford–Weyl algebra q(W ) is filtered,

EndK (W ) = EndK (V )⊕HomK (V
∗,V )⊕HomK (V ,V ∗)⊕ EndK (V

∗).

EndK (V ) = EndK (U ⊗ C
N ) ≃ End(U)⊗ EndK (C

N ) = End(U) .

HomK (V ,V ∗) ≃ Hom(U ,U∗)⊗HomK (C
N ,CN ∗

),

� : End(U)⊕ End(U∗) → EndGLN (W ) , X ⊕ Y �→ (X ⊗ Id)× (Y ⊗ Id) ,

ww′
− (−1)|w||w

′|w′w = Q(w,w′).

q0(W ) := K ⊂ q1(W ) := W ⊕K ⊂ . . . ⊂ qn(W ) . . . ,
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and it inherits from the Jordan–Heisenberg algebra W̃  a canonical Z2-grading and a 
canonical structure of Lie superalgebra by the supercommutator—see Sect. 2.1.2 for the 
definitions. The next statement is a sharpened version of Lemma 2.2.

Lemma 2.13 [qn(W ), qn′(W )] ⊂ qn+n′−2(W ).

Proof Lemma 2.2 asserts the commutation relation [Un(g),Un′(g)] ⊂ Un+n′−1(g) for 
the general case of a Lie superalgebra g with bracket [g, g] ⊂ g. For the specific case at 
hand, where the fundamental bracket [W ,W ] ⊂ K has zero component in W, the degree 
n+ n′ − 1 is lowered to n+ n′ − 2 by the very argument proving that lemma.  �

It now follows that each of the subspaces qn(W ) for n ≤ 2 is a Lie superalgebra. Since 
[q2(W ), q1(W )] ⊂ q1(W ), the quotient space q2(W )/q1(W ) is also a Lie superalgebra. By 
the Poincaré–Birkhoff–Witt theorem, there exists a vector-space isomorphism

sending q2(W )/q1(W ) to s, the space of super-symmetrized degree-two elements in 
q2(W ). Hence q2(W ) has a direct-sum decomposition q2(W ) = q1(W )⊕ s.

If {ei} is a homogeneous basis of W, every a ∈ s is uniquely expressed as

By adding and subtracting terms,

one sees that the product ww′ for w,w′
∈ W  has scalar part (ww′)K =

1

2

[w,w
′
] =

1

2
Q(w,w′) with respect to the decomposition q2(W ) = K⊕W ⊕ s .

Lemma 2.14 [s, s] ⊂ s.

Proof From the definition of s and [W ,W ] ⊂ K it is clear that [s, s] ⊂ K⊕ s. The state-
ment to be proved, then, is that [a, b] for a, b ∈ s has zero scalar part.

By the linearity of the supercommutator, it suffices to consider a single term of the sum 
(2.7). Thus we put a = ww′

+ (−1)|w||w
′|w′w, and have

Now we compute the scalar part of the right-hand side. Using the Jacobi identity for the 
Lie superalgebra q(W ) we obtain

The last expression vanishes because [w,w′
] ⊂ K lies in the center of q(W ).  �

q2(W )/q1(W )
∼
→ s,

(2.7)a =

∑
i,j
aij ei ej , aij = (−1)|ei||ej |aji.

2ww′
= (ww′

+ (−1)|w||w
′|w′w)+ (ww′

− (−1)|w||w
′|w′w),

1
2 [a, b] = [ww′, b] = w [w′, b] + [w, b]w′(−1)|w

′||b|.

[a, b]K = [w, [w′, b]] + [[w, b],w′
](−1)|w

′||b|
= [[w,w′

], b].
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2.5  osp(W) inside q(W)

As a subspace of q(W ) which closes w.r.t. the supercommutator [ , ], s is a Lie superalge-
bra. Now from Lemma 2.13 and the Jacobi identity for q(W ), one sees that s ⊂ q2(W ) 
acts on each of the quotient spaces qn(W )/qn−1(W ) for n ≥ 1 by a �→ [a, ]. In particu-
lar, s acts on q1(W )/q0(W ) = W  by a �→ [a, ], which defines a homomorphism of Lie 
superalgebras

The mapping τ is actually into osp(W ) ⊂ gl(W ). Indeed, for w,w′
∈ W  one has

and since [a, [w,w′
]] = 0, this vanishes by the Jacobi identity.

Lemma 2.15 The map τ : s → osp(W ) is an isomorphism of Lie superalgebras.

Proof Being a homomorphism of Lie superalgebras, the linear mapping τ is an isomor-
phism of such algebras if it is bijective. We first show that τ is injective. So, let a ∈ s be 
any element of the kernel of τ. The equation τ (a) = 0 means that [[a,w],w′

] = [τ (a)w,w′
] 

vanishes for all w,w′
∈ W . To fathom the consequences of this, let {ei} and {̃ei} be two 

homogeneous bases of W so that Q(ei , ẽj) = δij. Using that a ∈ s has a uniquely deter-
mined expansion a =

∑
aij ei ej with super-symmetric coefficients aij = (−1)|ei||ej |aj i, 

one computes

Thus the condition [[a,w],w′
] = 0 for all w,w′

∈ W  implies a = 0. Hence τ is injective.
By the Poincaré–Birkhoff–Witt isomorphism

the dimensions of the Z2-graded vector space s = s0 ⊕ s1 are

These agree with those of osp(W ) as recorded in Corollary 2.1. Hence our injective lin-
ear map τ : s → osp(W ) is in fact a bijection.  �

Remark 2.1 By the isomorphism τ every representation ρ of s ⊂ q(W ) induces a repre-
sentation ρ ◦ τ−1 of osp(W ).

Let us conclude this subsection by writing down an explicit formula for τ−1. To do 
so, let {ei} and {̃ej} be homogeneous bases of W with Q(ei , ẽj) = δij as before. For 
X ∈ osp(W ) notice that the coefficients aij := Q(ei ,Xej)(−1)|ej | are super-symmetric:

where the last equality sign uses (−1)|ei||ej | aj i = (−1)|ei||Xei| aj i = (−1)|ei||X |+|ei| aj i.
The inverse map τ−1

: osp(W ) → s is now expressed as

τ : s → gl(W ), a �→ τ (a) = [a, ].

Q(τ (a)w,w′)+ (−1)|τ(a)||w|Q(w, τ (a)w′) = [[a,w],w′
] + (−1)|a||w|[w, [a,w′

]],

[[a, ẽj], ẽi] = aij + (−1)|ei||ej |aj i = 2aij .

s ≃ q2(W )/q1(W ) ≃
∑

k+l=2
∧
k(W1)⊗ Sl(W0),

dim s0 = dim ∧
2(W1)+ dim S2(W0), dim s1 = dimW1 dimW0.

aij = (−1)|X ||ei|+1+|ej |Q(Xei , ej) = (−1)|X ||ei|Q(ej ,Xei) = (−1)|ei||ej |aj i,
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To verify this formula, one calculates the double supercommutator [ei , [τ−1(X), ej]] and 
shows that the result is equal to [ei ,Xej] = Q(ei ,Xej), which is precisely what is required 
from the definition of τ by [τ−1(X), ej] = Xej.

2.6  Spinor–oscillator representation

As before, starting from a Z2-graded K-vector space V = V0 ⊕ V1, let the direct sum 
W = V ⊕ V ∗ be equipped with the orthosymplectic form Q and denote by q(W ) the 
Clifford–Weyl algebra of W.

Consider now the following tensor product of exterior and symmetric algebras:

Following R. Howe we call it the spinor–oscillator module of q(W ). Notice that a(V ) 
can be identified with the graded-commutative subalgebra in q(W ) which is generated 
by V ⊕K. As such, a(V ) comes with a canonical Z2-grading and its space of endomor-
phisms carries a structure of Lie superalgebra, gl(a(V )) ≡ End(a(V )).

The algebra a(V ) now is to become a representation space for q(W ). Four operations 
are needed for this: the operator ε(ϕ1) : ∧k(V ∗

1 ) → ∧
k+1(V ∗

1 ) of exterior multiplica-
tion by a linear form ϕ1 ∈ V ∗

1 ; the operator ι(v1) : ∧k(V ∗
1 ) → ∧

k−1(V ∗
1 ) of alternating 

contraction with a vector v1 ∈ V1; the operator µ(ϕ0) : Sl(V ∗
0 ) → Sl+1(V ∗

0 ) of multipli-
cation with a linear function ϕ0 ∈ V ∗

0 ; and the operator δ(v0) : Sl(V ∗
0 ) → Sl−1(V ∗

0 ) of 
taking the directional derivative by a vector v0 ∈ V0.

The operators ε and ι obey the canonical anti-commutation relations (CAR), which is 
to say that ε(ϕ) and ε(ϕ′) anti-commute, ι(v) and ι(v′) do as well, and one has

The operators µ and δ obey the canonical commutation relations (CCR), i.e., µ(ϕ) and 
µ(ϕ′) commute, so do δ(v) and δ(v′), and one has

Given all these operations, one defines a linear mapping q : W → End(a(V )) by

with ι(v1), ε(ϕ1) operating on the first factor of the tensor product ∧(V ∗
1 )⊗ S(V ∗

0 ), and 
δ(v0), µ(ϕ0) on the second factor. Of course the two sets ε, ι and µ, δ commute with each 
other. In terms of q, the relations CAR and CCR are succinctly summarized as

where [ , ] denotes the usual supercommutator of the Lie superalgebra gl(a(V )). By the 
relation (2.9) the linear map q extends to a representation of the Jordan–Heisenberg Lie 
superalgebra W̃ = W ⊕K, with the constants of W̃  acting as multiples of Ida(V ).

Moreover, being a representation of W̃ , the map q yields a representation of the 
universal enveloping algebra U(W̃ ) ≡ q(W ). This representation is referred to as the 

(2.8)τ−1(X) = 1
2

∑
i,j
Q(ei ,Xej)(−1)|ej |+1 ẽi ẽj .

a(V ) := ∧(V ∗
1 )⊗ S(V ∗

0 ).

ι(v)ε(ϕ)+ ε(ϕ)ι(v) = ϕ(v) Id∧(V ∗
1 )
.

δ(v)µ(ϕ)− µ(ϕ)δ(v) = ϕ(v) IdS(V ∗
0 )
.

q(v1 + ϕ1 + v0 + ϕ0) = ι(v1)+ ε(ϕ1)+ δ(v0)+ µ(ϕ0) (vs ∈ Vs , ϕs ∈ V ∗
s ) ,

(2.9)[q(w) , q(w′)] = Q(w,w′) Ida(V ) ,
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spinor–oscillator representation of q(W ). In the sequel we will be interested in the 
osp(W )-representation induced from it by the isomorphism τ−1.

There is a natural Z-grading a(V ) =
⊕

m≥0 am(V ),

Note that the operators ε(ϕ1) and µ(ϕ0) increase the Z-degree of a(V ) by one, while the 
operators ι(v1) and δ(v0) decrease it by one. Note also if C = (−IdV )⊕ IdV ∗ is the osp
-element introduced in Sect. 2.2.2, then a direct computation using the formula (2.8) 
shows that am(V ) is an eigenspace of the operator (q ◦ τ−1)(C) with eigenvalue m. Thus 
C ∈ osp is represented on the spinor–oscillator module a(V ) by the degree.

2.6.1  Weight constraints

We now specialize to the situation of V = U ⊗ CN with U = U0 ⊕U1 a Z2-graded vec-
tor space as in Sect. 2.3, and we require U0 and U1 to be isomorphic with dimension 
dimU0 = dimU1 = n. Recall that

are Howe dual pairs in osp(W ). As of now we denote these by (g, k). There is a 
decomposition

in both cases. The notation highlights the fact that the operators in g(m)
→֒ osp(V ⊕ V ∗) 

change the degree of elements in a(V ) by m. Note that the Cartan subalgebra h of diago-
nal operators in g is contained in g(0) but h �= g(0).

Since the Lie algebra k is defined on CN , the k-action on a(V ) preserves the degree. This 
action exponentiates to an action of the complex Lie group K on a(V ).

Proposition 2.2 The subalgebra a(V )K  of K-invariants in a(V ) is an irreducible module 
for g. The vacuum 1 ∈ a(V )K  is contained in it as a cyclic vector such that

Proof This is a restatement of Theorems 8 and 9 of [10].  �

Remark 2.2 In the case of (g, k) = (osp(U ⊕U∗), oN ) it matters that K = ON, as the 
connected Lie group K = SON has invariants in a(V ) not contained in 〈g(2).1〉C.

Proposition 2.2 has immediate consequences for the weights of the g-representation 
on a(V )K . Using the notation of Sect. 2.2.1, let {Hsj} be a standard basis of h and {ϑsj} the 
corresponding dual basis. We now write ϑ0j =: φj and ϑ1j =: iψj ( j = 1, . . . , n).

am(V ) =
⊕

k+l=m ∧
k (V ∗

1 )⊗ Sl(V ∗
0 ).

(osp(U ⊕ U∗), oN ) , (osp(Ũ ⊕ Ũ∗), spN ) ,

g = g(−2)
⊕ g(0) ⊕ g(2) , g(0) = g ∩ (End(U)⊕ End(U∗)),

g(−2)
= g ∩Hom(U∗,U) , g(2) = g ∩Hom(U ,U∗),

g(−2).1 = 0, g(0).1 = �1�C, �g(2).1�C = a(V )K .
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Corollary 2.3 The representations of osp(U ⊕ U∗) on a(V )ON and osp(Ũ ⊕ Ũ∗) on 
a(V )SpN each have highest weight �N =

N
2

∑n
j=1(iψj − φj). Every weight of these represen-

tations is of the form 
∑n

j=1(imjψj − njφj) with −N
2 ≤ mj ≤

N
2 ≤ nj.

Proof Recall from Sect. 2.3 the embedding of osp(U ⊕ U∗) and osp(Ũ ⊕ Ũ∗) in 
osp(W ) , and from Lemma 2.15 the isomorphism τ−1

: osp(W ) → s where s is the Lie 
superalgebra of super-symmetrized degree-two elements in q(W ). Specializing formula 
(2.8) to the case of a Cartan algebra generator Hsj ∈ h ⊂ g one gets

where {ea} is a basis of CN and {fa} the dual basis of (CN )∗.
Now let τ−1(Hsj) ∈ s act by the corresponding operator, say Ĥsj := (q ◦ τ−1)(Hsj), in 

the spinor–oscillator representation q of s ⊂ q(W ). Application of that operator to the 
highest-weight vector 1 ∈ C ≡ ∧

0(V ∗
1 )⊗ S0(V ∗

0 ) ⊂ a(V )K  yields

Altogether this means that Ĥ 1 = �N (H)1 where �N (H) = N
2

∑
j(iψj(H)− φj(H)).

From Lemma 2.7 the roots α corresponding to root spaces gα ⊂ g(2) are of the form

where the indices j, j ′ are subject to restrictions that depend on g being osp(U ⊕ U∗) 
or osp(Ũ ⊕ Ũ∗). From a(V )K = g(2).1 one then has mj ≤

N
2 ≤ nj for every weight 

γ =
∑

(imjψj − njφj) of the g-representation on a(V )K .
The restriction mj ≥

N
2 − N  results from ∧(V ∗

1 ) = ∧(U∗
1 ⊗ (CN )∗) being isomorphic 

to ⊗n
j=1 ∧ (CN )∗ and the vanishing of ∧k(CN )∗ = 0 for k > N .  �

Corollary 2.4 For each of our two cases g = osp(U ⊕U∗) and g = osp(Ũ ⊕ Ũ∗) the 
element C = −

∑
s,j Hsj ⊂ g is represented on a(V )K  by the degree operator.

Proof Since the K-action on a(V ) preserves the degree, the subalgebra a(V )K  is still Z
-graded by the same degree. Summing the above expressions for (q ◦ τ−1)(Hsj) over s, j 
and using CAR and CCR to combine terms, we obtain

which is in fact the operator for the degree of the Z-graded module a(V )K .  �

τ−1(Hsj) = −
1
2

∑N

a=1
((fs,j ⊗ fa)(es,j ⊗ ea)+ (−1)s(es,j ⊗ ea)(fs,j ⊗ fa)),

Ĥ1j 1 =
1
2

∑
a
ι(e1,j ⊗ ea)ε(f1,j ⊗ fa)1 =

N
2 ,

Ĥ0j 1 = −
1
2

∑
a
δ(e0,j ⊗ ea)µ(f0,j ⊗ fa)1 = −

N
2 .

−φj − φj ′ , −iψj − iψj ′ , −φj − iψj ′ ,

(q ◦ τ−1)(C) =

n∑

j=1

N∑

a=1

(
µ(f0,j ⊗ fa)δ(e0,j ⊗ ea)+ ε(f1,j ⊗ fa)ι(e1,j ⊗ ea)

)
,
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2.6.2  Positive and simple roots

We here record the systems of simple positive roots that we will use later (in Sect. 5.4). 
In the case of osp(U ⊕ U∗) this will be

The corresponding system of positive roots for osp(U ⊕ U∗) is

In the case of osp(Ũ ⊕ Ũ∗) we choose the system of simple positive roots

The corresponding positive root system then is

In both cases the roots

form a system of positive roots for gl(U) ≃ g(0) ⊂ osp.

2.6.3  Unitary structure

We now equip the spinor–oscillator module a(V ) for V = V0 ⊕ V1 with a unitary struc-
ture. The idea is to think of the algebra a(V ) as a subset of O(V0 , ∧V

∗
1 ), the holomor-

phic functions V0 → ∧(V ∗
1 ). For such functions a Hermitian scalar product is defined via 

Berezin’s notion of superintegration as follows.
For present purposes, it is imperative that V be defined over R, i.e., V = VR ⊗ C, and 

that V be re-interpreted as a real vector space V ′
:= VR ⊕ J VR with complex structure 

J ≃ i. Needless to say, this is done in a manner consistent with the Z2-grading, so that 
V ′

= V ′
0 ⊕ V ′

1 and V ′
s = Vs,R ⊕ J Vs,R ≃ Vs,R ⊗ C = Vs.

From Vs = Us ⊗ CN and U1 ≃ U0 we are given an isomorphism V1 ≃ V0. This induces 
a canonical isomorphism ∧(V ′

1
∗
) ≃ ∧(V ′

0
∗
), which gives rise to a bundle isomorphism � 

sending Ŵ(V ′
0 , ∧V

′
1
∗
), the algebra of real-analytic functions on V ′

0 with values in ∧(V ′
1
∗
), 

to Ŵ(V ′
0 , ∧T

∗V ′
0), the complex of real-analytic differential forms on V ′

0. Fixing some ori-
entation of V ′

0, the Berezin (super-)integral for the Z2-graded vector space V ′
= V ′

0 ⊕ V ′
1 

is then defined as the composite map

whenever the integral over V ′
0 exists. Thus the Berezin integral is a two-step process: first 

the section � is converted into a differential form, then the form �[�] is integrated in the 
usual sense to produce a complex number. Of course, by the rules of integration of dif-
ferential forms only the top-degree component of �[�] contributes to the integral.

The subspace VR ⊂ V ′ has played no role so far, but now we use it to decom-
pose the complexification V ′

⊗ C into holomorphic and anti-holomorphic parts: 
V ′

⊗ C = V ⊕ V  and determine an operation of complex conjugation V ∗
→ V ∗. We 

also fix on V = V0 ⊕ V1 a Hermitian scalar product (a.k.a. unitary structure) 〈 , 〉 so that 

φ1 − φ2, . . . ,φn−1 − φn,φn − iψ1, iψ1 − iψ2, . . . , iψn−1 − iψn, iψn−1 + iψn.

φj ± φk , iψj ± iψk (j < k), 2φj , φj ± iψk (j , k = 1, . . . , n).

φ1 − φ2, . . . ,φn−1 − φn,φn − iψ1, iψ1 − iψ2, . . . , iψn−1 − iψn, 2iψn.

φj ± φk , iψj ± iψk (j < k), 2iψj , φj ± iψk (j , k = 1, . . . , n).

φj − φk , iψj − iψk (j < k), φj − iψk (j , k = 1, . . . , n),

Ŵ(V ′
0 , ∧V

′
1
∗
)

�
−→Ŵ(V ′

0 , ∧T
∗V ′

0)

∫
−→C , � �→ �[�] �→

∫

V ′
0

�[�] ,



Page 24 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

V0 ⊥ V1. This scalar product determines a parity-preserving complex anti-linear bijec-
tion c : V → V ∗ by v �→ cv = �v, �. Composing c with complex conjugation V ∗

→ V ∗ 
we get a C-linear isomorphism V → V ∗, v �→ cv.

In this setting there is a distinguished Gaussian section γ ∈ Ŵ(V ′
0 ,∧V

′
1
∗
⊗ C) singled 

out by the conditions

To get a close-up view of γ, let {e0,j} and {e1,j} be orthonormal bases of V0 resp. V1 , 
and let zj = ce0,j and ζj = ce1,j be the corresponding coordinate functions, with com-
plex conjugates zj and ζ j. Viewing ζj, ζ j as generators of ∧(V ′

1
∗
⊗ C), our section 

γ ∈ Ŵ(V ′
0 , ∧V

′
1
∗
⊗ C) is the standard Gaussian

We fix the normalization of γ by the condition 
∫
V ′
0
�[γ ] = 1.

A unitary structure on the spinor–oscillator module a(V ) is now defined as follows. 
Let complex conjugation V ∗

→ V ∗ be extended to an algebra anti-homomorphism 
a(V ) → a(V ) by the convention �1�2 = �2�1 (without any sign factors). Then, if 
�1 ,�2 are any two elements of a(V ), we view them as holomorphic maps V0 → ∧(V ∗

1 ), 
multiply �1 with �2 to form �1�2 ∈ Ŵ(V ′

0 ,∧V
′
1
∗
⊗ C), and define their Hermitian sca-

lar product by

Let us mention in passing that (2.11) coincides with the unitary structure of a(V ) used 
in the Hamiltonian formulation of quantum field theories and in the Fock space descrip-
tion of many particle systems composed of fermions and bosons. The elements

for mj ∈ {0, 1} and nj ∈ {0, 1, . . .} form an orthonormal set in a(V ), which in physics is 
called the occupation number basis of a(V ).

Lemma 2.16 For all v0 ∈ V0 and v1 ∈ V1 the pairs of operators δ(v0), µ(cv0) and ι(v1), 
ε(cv1) in End(a(V )) obey the relations

i.e., they are mutual adjoints with respect to the unitary structure of a(V ).

Proof Let v ∈ V0. Since �1 ∈ a(V ) is anti-holomorphic, we have δ(v)�1 = 0. By the 
first defining property of γ in (2.10) and the fact that δ(v) is a derivation,

(2.10)∀v0 ∈ V0 , v1 ∈ V1 : δ(v0)γ = −µ(cv0)γ , ι(v1)γ = −ε(cv1)γ .

γ = const × e
−
∑

j(zjzj+ζjζ j).

(2.11)��1 ,�2�a(V ) :=

∫

V ′
0

�[γ �1�2] .

(2.12)
∧

j
ζ
mj

j ⊗

∏
j
z
nj
j /

√
nj !

δ(v0)
†
= µ(cv0), ι(v1)

†
= ε(cv1),

γ �1δ(v)�2 = δ(v)
(
γ �1�2

)
+ µ(cv)γ �1�2,



Page 25 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

and passing to the Hermitian scalar product by the Berezin integral we obtain

By the definition of the †-operation this means that δ(v)† = µ(cv).
In the case of v ∈ V1 the argument is similar but for a few sign changes. Our starting 

relation changes to

since the operator ι(v) is an anti-derivation. If v �→ ṽ denotes the isomorphism V1 → V0 , 
then � ◦ ι(v) = ι(ṽ) ◦� and the first term on the right-hand side Berezin-integrates to 
zero because ι(ṽ) lowers the degree in ∧T ∗V ′

0,. Therefore,

which is the statement ι(v)† = ε(cv).  �
By the Hermitian scalar product (2.11) and the corresponding L2-norm, the spinor–

oscillator module a(V ) is completed to a Hilbert space, AV . A nice feature here is that, 
as an immediate consequence of the factors 1/

√
nj ! in the orthonormal basis (2.12), 

the L2-condition ��,��a(V ) < ∞ implies absolute convergence of the power series for 
� ∈ AV  . Hence AV  can be viewed as a subspace of O(V0 ,∧V

∗
1 ):

In the important case of isomorphic components V0 ≃ V1, we may regard AV  as the Hil-
bert space of square-integrable holomorphic differential forms on V0.

Note that although δ(v) and µ(ϕ) do not exist as operators on the Hilbert space AV , 
they do extend to linear operators on O(V0 ,∧V

∗
1 ) for all v ∈ V0 and ϕ ∈ V ∗

0 .

2.7  Real structures

In this subsection we define a real structure for the complex vector space W = V ⊕ V ∗ 
and describe, in particular, the resulting real forms of the (Z2-even components of the) 
Howe dual partners introduced above.

Recalling the map c : V → V ∗, v �→ �v, �, let WR ≃ V  be the vector space

Note that WR can be viewed as the fixed point set WR = Fix(C) of the involution

By the orthogonality assumption, WR = W0,R ⊕W1,R where Ws,R = Ws ∩WR.
The symmetric bilinear form S on W1 = V1 ⊕ V ∗

1  restricts to a Euclidean structure

whereas the alternating form A on W0 = V0 ⊕ V ∗
0  induces a real-valued symplectic form

��1, δ(v)�2�a(V ) =

∫

V0

�[γ �1µ(cv)�2] = �µ(cv)�1,�2�a(V ).

γ �1ι(v)�2 = (−1)|�1|ι(v)
(
γ �1�2

)
+ (−1)|�1|ε(cv)γ �1�2,

��1, ι(v)�2�a(V ) =

∫

V ′
0

�[γ �1ε(cv)�2] = �ε(cv)�1,�2�a(V ) ,

AV = {� ∈ O(V0 ,∧V
∗
1 ) | ��,��a(V ) < ∞}.

WR = {v + cv | v ∈ V } ⊂ V ⊕ V ∗
= W .

C : W → W , v + ϕ �→ c−1ϕ + cv.

S : W1,R ×W1,R → R, (v + cv , v′ + cv′) �→ 2Re�v, v′�

ω = iA : W0,R ×W0,R → R, (v + cv , v′ + cv′) �→ 2Im�v, v′�.
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Please be warned that, since Q = S + A fails to be real-valued on WR, the intersection 
osp(W ) ∩ End(WR) is not a real form of the complex Lie superalgebra osp(W ).

The connected classical real Lie groups associated to the bilinear forms S and ω are

They have Lie algebras denoted by o(W1,R) and sp(W0,R). By construction we have 
osp(W )0 ∩ End(WR) ≃ o(W1,R)⊕ sp(W0,R), and this in fact is a real form of the com-
plex Lie algebra osp(W )0 ≃ o(W1)⊕ sp(W0).

Proposition 2.3 The elements of o(W1,R)⊕ sp(W0,R) ⊂ osp(W ) are mapped via τ−1 
and the spinor–oscillator representation to anti-Hermitian operators in End(a(V )).

Proof Let X ∈ o(W1,R)⊕ sp(W0,R). We know from Lemma 2.15 that τ−1(X) is a 
super-symmetrized element of degree two in the Clifford–Weyl algebra q(W ). To 
see the explicit form of such an element, recall the definition τ (a)w = [a,w]. Since 
Q = S + A, and A restricts to iω, the fundamental bracket [ , ] : WR ×WR → C given by 
[w,w′

] = Q(w,w′) is real-valued on W1,R but imaginary-valued on W0,R. Therefore,

The proposed statement X†
= −X now follows under the assumption that the spinor–

oscillator representation maps every w ∈ WR to a self-adjoint operator in End(a(V )). But 
every element w ∈ WR is of the form v1 + cv1 + v0 + cv0 and this maps to the operator 
ι(v1)+ ε(cv1)+ δ(v0)+ µ(cv0), which is self-adjoint by Lemma 2.16.  �

Given the real structure WR of W, we now ask how End(WR) intersects with the Howe 
pairs (osp(U ⊕U∗), oN ) and (osp(Ũ ⊕ Ũ∗), spN ) embedded in osp(W ). By the observa-
tion that Q restricted to WR is not real-valued, osp(U ⊕ U∗) ∩ End(WR) fails to be a real 
form of the complex Lie superalgebra osp(U ⊕ U∗), and the same goes for osp(Ũ ⊕ Ũ∗) . 
Nevertheless, it is still true that the even components of these intersections are real 
forms of the complex Lie algebras osp(U ⊕ U∗)0 and osp(Ũ ⊕ Ũ∗)0.

The real forms of interest are best understood by expressing them via blocks with 
respect to the decomposition W = V ⊕ V ∗. Since WR = Fix(C), the complex linear 
endomorphisms of W stabilizing WR are given by

Writing X in block-decomposed form

where A ∈ End(V ), B ∈ Hom(V ∗,V ), C ∈ Hom(V ,V ∗), and D ∈ End(V ∗), the condition 
X = CXC−1 becomes

SO(W1,R) := {g ∈ SL(W1,R) | ∀w,w
′
∈ W1,R : S(gw, gw′) = S(w,w′)},

Sp(W0,R) := {g ∈ GL(W0,R) | ∀w,w
′
∈ W0,R : ω(gw, gw′) = ω(w,w′)}.

τ−1(o(W1,R)) = span
R
{ww′

− w′w} (w,w′
∈ W1,R) ,

τ−1(sp(W0,R)) = span
R
{iww′

+ iw′w} (w,w′
∈ W0,R).

End(WR) ≃ {X ∈ End(W ) | X = CXC−1
}.

X = A⊕ B⊕ C⊕ D ≡

(
A B

C D

)
,
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The bar here is a short-hand notation for the complex anti-linear maps

When expressed with respect to compatible bases of V and V ∗, these maps are just the 
standard operation of taking the complex conjugate of the matrices of A and B.

Now, to get an understanding of the intersections oN ∩ End(WR) and spN ∩ End(WR) , 
recall the relation D = −At for X ∈ osp(W )0 and the fact that the action of the com-
plex Lie algebras oN = o(CN ) and spN = sp(CN ) on W stabilizes the decomposi-
tion W = V ⊕ V ∗, with the implication that B = C = 0 in both cases. Combining 
D = −At with D = A one gets the anti-Hermitian property A = −A

t, which means that 
oN ∩ End(WR) and spN ∩ End(WR) are compact real forms of oN and spN .

Turning to the Howe dual partners of oN and spN , recall from Sect. 2.3 the isomor-
phism ψ : CN

→ (CN )∗ and arrange for it to be an isometry, ψ−1 = ψ t, of the unitary 
structures of CN and (CN )∗. Recall also the embedding of the two Lie superalgebras 
osp(U ⊕ U∗) and osp(Ũ ⊕ Ũ∗) into osp(W ) = osp(U ⊗ CN

⊕U∗
⊗ (CN )∗) by

Here the notation still means the same, i.e., a ∈ End(U), b ∈ Hom(U∗,U), and so on.
Let a real structure (U ⊕ U∗)R of U ⊕U∗ be defined in the same way as the real struc-

ture WR = (V ⊕ V ∗)R of W = V ⊕ V ∗.

Proposition 2.4 osp(U ⊕ U∗)0 ∩ End(WR) ≃ o((U1 ⊕ U∗
1 )R)⊕ sp((U0 ⊕ U∗

0 )R).

Proof The intersection is computed by transferring the conditions D = A and C = B 
to the level of osp(U ⊕ U∗)0. Of course D = A just reduces to the corresponding condi-
tion d = a. Because the isometry ψ : CN

→ (CN )∗ in the present case is symmetric one 
has ψ−1 = ψ t

= +ψ, so the condition C = B transfers to c = b. For the same reason, 
the parity of the maps b, c is identical to that of B,C, i.e., b|U∗

0→U0
 is symmetric, b|U∗

1→U1
 

is skew, and similar for c. Hence, computing the intersection osp(U ⊕ U∗)0 ∩ End(WR) 
amounts to the same as computing osp(V ⊕ V ∗)0 ∩ End(WR), and the statement follows 
from our previous discussion of the latter case.  �

In the case of the Howe pair (osp(Ũ ⊕ Ũ∗), spN ) the isometry ψ : CN
→ (CN )∗ is 

skew, so that ψ−1 = ψ t
= −ψ. At the same time, the parity of b, c is reversed as com-

pared to B,C: now the map b|U∗
0→U0

 is skew and b|U∗
1→U1

 is symmetric (and similar for c).  
Therefore,

which is a compact real form usp(U1 ⊕U∗
1 ) of sp(U1 ⊕ U∗

1 ); and

C = B, D = A.

Hom(V ∗,V ) → Hom(V ,V ∗) , B �→ B := cBc,

End(V ) → End(V ∗) , A �→ A := cAc−1.

(
a b

c d

)
�→

(
a⊗ Id b⊗ ψ−1

c⊗ ψ d⊗ Id

)
=

(
A B

C D

)
.

osp(Ũ ⊕ Ũ∗)0 ∩ End(W1,R) ≃ {

(
a b

−b − at

)
∈ End(U1 ⊕U∗

1 ) | a = −a
t, b = +b

t
},
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which is a non-compact real form of o(U0 ⊕U∗
0 ) known as so∗(U0 ⊕U∗

0 ).
Let us summarize this result.

Proposition 2.5 osp(Ũ ⊕ Ũ∗)0 ∩ End(WR) ≃ usp(U1 ⊕ U∗
1 )⊕ so∗(U0 ⊕U∗

0 ).

3  Semigroup representation
As before, we identify the complex Lie superalgebra g := osp(W ) with the space of 
super-symmetrized degree-two elements in q2(W ), so that

The adjoint representation of g on q(W ) restricts to the Lie algebra representation of 
g0 = o(W1)⊕ sp(W0) on W = W1 ⊕W0 which is just the direct sum of the fundamental 
representations of o(W1) and sp(W0). These are integrated by the fundamental represen-
tations of the complex Lie groups SO(W1) and Sp(W0) , respectively.

Since the Clifford–Weyl algebra q(W ) is an associative algebra, one can ask if, given 
x ∈ g0 ⊂ q(W ), the exponential series ex makes sense. The existence of a one-parameter 
group etx for x ∈ g0 would of course imply that

Now q(W ) = c(W1)⊗w(W0). Since the Clifford algebra c(W1) is finite-dimensional, 
the series ex for x ∈ o(W1) →֒ g0 does make immediate sense. In this way one is able to 
exponentiate the Lie algebra o(W1) in c(W1). The associated complex Lie group, which 
is then embedded in c(W1), is Spin(W1). This is a 2:1 cover of the complex orthogonal 
group SO(W1). Its conjugation representation on W1 as in (3.1) realizes the covering map 
as a homomorphism Spin(W1) → SO(W1).

Viewing the other summand sp(W0) of g0 as being in the infinite-dimensional Weyl 
algebra w(W0), it is definitely not possibly to exponentiate it in such a naive way. This 
is in particular due to the fact that for most x ∈ sp(W0) the formal series ex is not con-
tained in any space wn(W0) of the filtration of w(W0).

As a first step toward remedying this situation, we consider q(W ) as a space of densely 
defined operators on the completion AV  (cf. Sect. 2.6.3) of the spinor–oscillator module 
a(V ). Since all difficulties are on the W0 side, for the remainder of this chapter we sim-
plify the notation by letting W := W0 and discussing only the oscillator representation 
of w(W ). Recall that this representation on a(V ) is defined by multiplication µ(ϕ) for 
ϕ ∈ V ∗ and the directional derivative δ(v) for v ∈ V .

For x ∈ w(W ) there is at least no formal obstruction to the exponential series of 
x existing in End(AV ). However, direct inspection shows that convergence cannot be 
expected unless some restrictions are imposed on x. This is done by introducing a notion 
of unitarity and an associated semigroup of contraction operators.

osp(Ũ ⊕ Ũ∗)0 ∩ End(W0,R) ≃ {

(
a b

−b − at

)
∈ End(U0 ⊕U∗

0 ) | a = −a
t, b = −b

t
},

q2(W ) = g⊕ q1(W ), q1(W ) = W ⊕ C .

(3.1)
d

dt
e tx w e−tx

∣∣∣
t=0

= ad(x)w (w ∈ W ) .
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3.1  The oscillator semigroup

Here we introduce the basic semigroup in the complex symplectic group. Various struc-
tures are lifted to its canonical 2:1 covering. Actions of the real symplectic and meta-
plectic groups are discussed along with the role played by the cone of elliptic elements.

3.1.1  Contraction semigroup: definitions, basic properties

Letting 〈 , 〉 be the unitary structure on V which was fixed in the previous chapter, we 
recall the complex anti-linear bijection c : V → V ∗, v �→ �v , �. There is an induced 
map C : W → W  on W = V ⊕ V ∗ by C(v + ϕ) = c−1ϕ + cv. As before, we put 
WR := Fix(C) ⊂ W .

Since we have restricted our attention to the symplectic side, the vector spaces W 
and WR are now equipped with the standard complex symplectic structure A and real 
symplectic form ω = iA , respectively. From here on in this chapter we abbreviate the 
notation by writing Sp := Sp(W ) and sp := sp(W ). Let an anti-unitary involution 
σ : Sp → Sp be defined by g �→ Cg C−1. Its fixed point group Fix(σ ) is the real form 
Sp(WR) of main interest. We here denote it by Sp

R
 and let spR stand for its Lie algebra.

Given A and C, consider the mixed-signature Hermitian structure

which we denote by A(Cw ,w′) =: �w ,w′
�s, with subscript s to distinguish it from the 

canonical Hermitian structure of W given by �v + ϕ, v′ + ϕ′
� := �v , v′� + �c−1ϕ′, c−1ϕ�. 

The relation between the two is

Note also the relation

Now observe that the real form Sp
R

 is the subgroup of 〈 , 〉s-isometries in Sp :

Then define a semigroup H(Ws) in Sp by

Note that the operation g �→ g† of Hermitian conjugation with respect to 〈 , 〉 stabilizes 
Sp and that Sp

R
 is defined by the condition g†sg = s. The semigroup H(Ws) is defined by 

h†sh < s, or equivalently, s − h†sh is positive definite. We will see later that H(Ws) (or, 
rather, a 2:1 cover thereof ) acts by contraction operators on the Hilbert space AV .

It is immediate that H(Ws) is an open semigroup in Sp with Sp
R

 on its boundary. Fur-
thermore, H(Ws) is stabilized by the action of Sp

R
× Sp

R
 by h �→ g1h g

−1
2 .

The map π : Sp → Sp, h �→ hσ(h−1), will play an important role in our considera-
tions. It is invariant under the Sp

R
-action by right multiplication, π(hg−1) = π(h), and is 

equivariant with respect to the action defined by left multiplication on its domain of def-
inition and conjugation on its image space, π(gh) = gπ(h)g−1. Direct calculation shows 
that in fact the π-fibers are exactly the orbits of the Sp

R
-action by right multiplication. 

Observe that if h = exp(iX) for X ∈ spR, then σ(h) = h−1 and π(h) = h2. In particular, if 

W ×W → C, (w ,w′) �→ A(Cw ,w′),

�w ,w′
�s = �w , sw′

�, s = (−IdV )⊕ IdV ∗ .

σ(g) = Cg C−1
= s (g−1)†s (g ∈ Sp).

Sp
R
= {g ∈ Sp | ∀w ∈ W : �gw, gw�s = �w,w�s}.

H(Ws) := {h ∈ Sp | ∀w ∈ W , w �= 0 : �hw, hw�s < �w,w�s} .
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t is a Cartan subalgebra of sp which is defined over R, then π |exp(itR) is just the squaring 
map t �→ t2.

3.1.2  Actions of SpR
We now fix a Cartan subalgebra t having the property that TR = exp(tR) is contained 
in the unitary maximal compact subgroup defined by 〈 , 〉 of Sp(WR). This means that 
T acts diagonally on the decomposition W = V ⊕ V ∗ and there is a (unique up to 
order) orthogonal decomposition V = E1 ⊕ . . .⊕ Ed into one-dimensional subspaces 
so that if Fj := c(Ej), then T acts via characters χj on the vector spaces Pj := Ej ⊕ Fj by 
t(ej , fj) = (χj(t)ej ,χj(t)

−1fj).
In other words, we may choose {ej}j=1,...,d to be an orthonormal basis of V and equip 

V ∗ with the dual basis so that the elements t ∈ T  are in diagonal form:

Observe that, conversely, the elements of Sp that stabilize the decomposition 
W = P1 ⊕ . . .⊕ Pd and act diagonally in the above sense, are exactly the elements of T. 
Moreover, exp(itR) is the subgroup of elements t ∈ T  with χj(t) ∈ R+ for all j. Note that 
the complex symplectic planes Pj are A-orthogonal and defined over R.

We now wish to analyze H(Ws) via the map π : h �→ hσ(h−1). However, for a techni-
cal reason related to the proof of Proposition 3.1 below, we must begin with the oppo-
site map, π ′

: h �→ σ(h−1)h. Thus let M := π ′(H(Ws)) and write π ′
: H(Ws) → M. The 

toral semigroup T+ := exp(itR) ∩ H(Ws) consists of those elements t ∈ exp(itR) that 
act as contractions on V ∗, i.e., 0 < χj(t)

−1 < 1 for all j. The restriction π ′
|T+

= π |T+
 is, 

as indicated above, the squaring map t �→ t2; in particular we have T+ ⊂ M and the set 
{g tg−1

| t ∈ T+ , g ∈ Sp
R
} is likewise contained in M.

In the sequel, we will often encounter the action of Sp
R

 on T+ and M by conjugation. 
We therefore denote this action by a special name, Int(g) t := g tg−1.

Proposition 3.1 M = Int(Sp
R
)T+.

Proof For g ∈ Sp one has σ(g−1) = Cg−1C−1
= sg†s. Hence if M ∋ m = σ(h−1)h 

with h ∈ H(Ws), then m = sh†sh. Consequently, �w,mw�s = �hw, hw�s < �w,w�s for all 
w ∈ W \{0}. In particular, �w,mw�s ∈ R and if w �= 0 is an m-eigenvector with eigenvalue 
�, it follows that � ∈ R and ��w,w�s < �w,w�s �= 0.

Now we have ChC−1
= σ(h) and hence CmC−1

= m−1. As a result, if w �= 0 is an 
m-eigenvector with eigenvalue �, then so is C w with eigenvalue �−1. Since CsC−1

= −s , 
the product of 〈w,w〉s with 〈Cw,Cw〉s is always negative. If 〈w,w〉s > 0 it follows that 
� < 1 and �−1 > 1; if 〈Cw,Cw〉s > 0 then �−1 < 1 and � > 1. In both cases 0 < � �= 1.

Since m does indeed have at least one eigenvector, we have constructed a com-
plex 2-plane Q1 as the span of the linearly independent vectors w and Cw. The plane 
Q1 is defined over R and, because 0 �= �w,w�s = A(Cw,w), it is A-non-degenerate. Its 
A-orthogonal complement Q⊥

1  is therefore also non-degenerate and defined over R.
The transformation m ∈ Sp stabilizes the decomposition W = Q1 ⊕ Q⊥

1 . Hence, pro-
ceeding by induction we obtain an A-orthogonal decomposition W = Q1 ⊕ . . .⊕ Qd . 

t = diag(�1, . . . , �d , �
−1
1 , . . . , �−1

d ) , �j = χj(t).
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Since the Qj are m-invariant symplectic planes defined over R, there exists g ∈ Sp
R

 so 
that t := gmg−1 stabilizes the above T-invariant decomposition W = P1 ⊕ . . .⊕ Pd. 
Exchanging w with C w if necessary, we may assume that t acts diagonally on Pj = Ej ⊕ Fj 
by (ej , fj) �→ (�j ej , �

−1
j fj) with �j > 1. In other words, t ∈ T+.  �

If we let

then we now have the following analog of the KAK-decomposition.

Corollary 3.1 The semigroup H(Ws) decomposes as H(Ws) = Sp
R
T+SpR. In particu-

lar, H(Ws) is connected.

Proof By definition, H(Ws) = π ′−1
(M), and from Proposition 3.1 one has 

H(Ws) = π ′−1
(Int(Sp

R
)T+). Now the map π ′

|T+
: T+ → T+, t �→ t2 is surjective. 

Therefore π ′−1
(T+) = Sp

R
T+, which is to say that each point in the fiber of π ′ over 

t ∈ T+ lies in the orbit of 
√
t ∈ T+ generated by left multiplication with Sp

R
. On the 

other hand, by the property gπ ′(h)g−1
= π ′(hg−1) of Sp

R
-equivariance we have

and hence H(Ws) = π ′−1
(Int(Sp

R
)T+) = π ′−1

(T+)SpR = Sp
R
T+SpR.

Because Sp
R

 and T+ are connected, so is H(Ws) = Sp
R
T+SpR.  �

It is clear that M = Int(Sp
R
)T+ ⊂ H(Ws). Furthermore, since both T+ and Sp

R
 are 

invariant under the operation of Hermitian conjugation h �→ h† and under the involu-
tion h �→ shs, we have the following consequences.

Corollary 3.2 H(Ws) is invariant under h �→ h† and also under h �→ shs. In particular, 
H(Ws) is stabilized by the map h �→ σ(h−1) = sh†s.

Remark 3.1 Letting h′ := σ(h)−1 one has π ′(h) = σ(h)−1h = h′σ(h′)−1
= π(h′) and 

hence M = π ′(H(Ws)) = π(H(Ws)). The stability of H(Ws) under h �→ σ(h)−1 was not 
immediate from our definition of H(Ws), which is why we have been working from the 
viewpoint of H(Ws) = π ′−1

(M) so far. Now that we have it, we may regard H(Ws) as the 
total space of an Sp

R
-principal bundle π : H(Ws) → M. We are going to see in Corol-

lary 3.3 that this principal bundle is trivial.

Next observe that, since σ(m) = m−1 for m = σ(h)−1h = h′σ(h′)−1
∈ M, the maps 

π : M → M and π ′
: M → M coincide and are just the square m �→ m2. Thus the claim 

that the elements of M have a unique square root in M can be formulated as follows.

Proposition 3.2 The squaring map π = π ′
: M → M is bijective.

Proof Recall from Proposition 3.1 that every m ∈ M is diagonalizable in the sense that 
M = Int(Sp

R
)T+. Since π : T+ → T+ is surjective, the surjectivity of π : M → M is 

immediate. For the injectivity of π we note that the m-eigenspace with eigenvalue � is 

Sp
R
T+SpR := {g1tg

−1
2 | g1, g2 ∈ Sp

R
, t ∈ T+} ,

Int(Sp
R
)T+ = Int(Sp

R
)π ′(π ′−1

(T+)) = π ′(π ′−1
(T+)SpR)
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contained in the m2-eigenspace with eigenvalue �2. The result then follows from the fact 
that all eigenvalues of m are positive real numbers.  �

Corollary 3.3 Each of the two Sp
R

-equivariant maps Sp
R
×M → H(Ws) defined by 

(g ,m) �→ gm and by (g ,m) �→ mg−1, is a bijection.

Proof Consider the map (g ,m) �→ gm. Surjectivity is evident from Corollary 3.1 
and M = Int(Sp

R
)T+. For the injectivity it suffices to prove that if m1,m2 ∈ M 

and g ∈ Sp
R

 with gm1 = m2, then m1 = m2. But this follows directly from 
π ′(m1) = π ′(gm1) = π ′(m2) and the fact that π ′

|M is the bijective squaring map.

The proof for the map (g ,m) �→ mg−1 is similar, with π replacing π ′.  �

3.1.3  Cone realization of M

Let us look more carefully at M as a geometric object. First, as we have seen, the ele-
ments m of M satisfy the condition m = σ(m−1). We regard ψ : H(Ws) → H(Ws) , 
h �→ σ(h−1), as an anti-holomorphic involution and reformulate this condition as 
M ⊂ Fix(ψ). In the present section we are going to show that M is a closed, connected, 
real-analytic submanifold of H(Ws) which locally agrees with Fix(ψ). This implies in 
particular that M is totally real in H(Ws) with dimR M = dimC H(Ws). We will also 
show that the exponential map identifies M with a precisely defined open cone in ispR. 
We begin with the following statement.

Lemma 3.1 The image M of π is closed as a subset of H(Ws).

Proof Let h ∈ cl(M) ⊂ H(Ws). By the definition of M, we still have hσ(h)−1
=: m ∈ M . 

If hn is any sequence from M with hn → h, then hnσ(hn)−1
→ m. But m has a unique 

square root 
√
m ∈ M and hn = σ(hn)

−1
→

√
m. Hence h =

√
m ∈ M.  �

Remark 3.2 M of course fails to be closed as a subset of Sp. For example, g = Id is in 
the closure of M ⊂ Sp but is not in M.

Lemma 3.2 The exponential map exp : sp → Sp has maximal rank along t+.

Proof We are going to use the fact that the squaring map S : Sp → Sp, g �→ g2, is a 
local diffeomorphism of Sp at any point t ∈ T+. To show this, we compute the differen-
tial of S at t and obtain

where dLg denotes the differential of the left translation Lg : Sp → Sp, g1 �→ gg1. The 
middle map Idsp + Ad(t−1) : sp → sp is regular because all of the eigenvalues of t ∈ T+ 
are positive real numbers. Since dL t−1 : TtSp → sp and dL t2 : sp → Tt2Sp are isomor-
phisms, it follows that DtS : TtSp → Tt2Sp is an isomorphism.

DtS = dL t2 ◦ (Idsp + Ad(t−1)) ◦ dL t−1 ,
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Turning to the proof of the lemma, given ξ ∈ t+ we now choose n ∈ N so that 2−nξ is 
in a neighborhood of 0 ∈ sp where exp is a diffeomorphism. It follows that for U a suf-
ficiently small neighborhood of ξ, the exponential map expressed as

is a diffeomorphism of U onto its image.  �

Now recall M = Int(Sp
R
)T+ and consider the cone

It follows from the equivariance of exp, i.e., exp(Ad(g)ξ) = Int(g) exp(ξ), that 
exp : C → Int(Sp

R
)T+ = M is surjective. Furthermore, exp |t+ : t+ → T+ is injective 

and for every ξ ∈ t+ the isotropy groups of the Sp
R

-actions at ξ and exp(ξ) are the same. 
Therefore exp : C → M is also injective.

In fact, much stronger regularity holds. For the statement of this result we recall the 
anti-holomorphic involution ψ : H(Ws) → H(Ws) defined by h �→ σ(h−1) and let 
Fix(ψ)0 denote the connected component of Fix(ψ) that contains M.

Proposition 3.3 The image M ⊂ H(Ws) of π : h �→ hσ(h−1) is the closed, con-
nected, totally real submanifold Fix(ψ)0, which is half-dimensional in the sense that 
dimR M = dimC H(Ws). The set C = Ad(Sp

R
)t+, which is an open positive cone in ispR, is 

in bijection with M by the real-analytic diffeomorphism exp : C → M.

Proof Lemma 3.2 implies that t+ possesses an open neighborhood U in ispR so that 
exp |U is everywhere of maximal rank. Because T+ lies in H(Ws) and H(Ws) is open 
in Sp , by choosing U small enough we may assume that exp( 12U) ⊂ H(Ws) and there-
fore that exp(U) ⊂ M = exp(C). Since exp is a local diffeomorphism on U, we may also 
assume that U ⊂ C = Ad(Sp

R
)t+, and it then follows that C = Ad(Sp

R
)U . In particular, 

this shows that C is open in ispR. In summary,

By the equivariance of exp, we also know that it is everywhere of maximal rank on C.
Now ψ is an anti-holomorphic involution. Therefore, Fix(ψ)0 is a totally real, half-

dimensional closed submanifold of H(Ws), and since C is open in ispR, we also know 
that dimC C = dimR Fix(ψ)0. The maximal rank property of exp then implies that 
M = im(exp : C → Fix(ψ)0) is open in Fix(ψ)0. In Lemma 3.1 it was shown that M is 
closed in H(Ws). Thus it is open and closed in the connected manifold Fix(ψ)0, and 
consequently exp : C → M = Fix(ψ)0 is a local diffeomorphism of manifolds. Since we 
already know that exp : C → M is bijective, the desired result follows.  �

Corollary 3.4 The two identifications Sp
R
×M = H(Ws) defined by (g ,m) �→ gm and 

(g ,m) �→ mg−1 are real-analytic diffeomorphisms. The fundamental group of H(Ws) is 
isomorphic to π1(SpR) ≃ Z.

U ∋ η �→ 2−nη �→ exp(2−nη)
Sn
�→(exp(2−nη))2

n
= exp(η)

C := Ad(Sp
R
)t+ ⊂ ispR.

C = Ad(Sp
R
)U

exp
−→ Int(Sp

R
) exp(U) = M ⊂ Fix(ψ)0.
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Proof The first statement is proved by explicitly constructing a smooth inverse to each 
of the two maps. For this let g ′m′

= mg−1
= h ∈ H(Ws) and note that m =

√
π(h) and 

m′
=

√
π ′(h). Since the square root is a smooth map on M, a smooth inverse in the two 

cases is defined by

The second statement follows from C ≃ M by exp and the fact that Sp
R

 is a product 
of a cell and a maximal compact subgroup K . We choose K to be the unitary group 
U = U(V , � , �) acting diagonally on W = V ⊕ V ∗ and recall that π1(U) ≃ Z.  �

3.2  Oscillator semigroup and metaplectic group

Recall that we are concerned with the Lie algebra representation of spR ⊂ sp which is 
defined by the identification of sp with the set of symmetrized elements of degree two 
in the Weyl algebra w(W ) and the representation of w(W ) on a(V ). In Sect. 3.4 we con-
struct the oscillator representation of the metaplectic group Mp, a 2:1 cover of Sp

R
 , 

which integrates this Lie algebra representation. Observe that since π1(SpR) ≃ Z and Z 
has only one subgroup of index two, there is a unique such covering τ : Mp → Sp

R
. The 

method of construction [11] we use first yields a representation of the 2:1 covering space 
H̃(Ws) of H(Ws) and then realizes the oscillator representation of Mp by taking limits 
that correspond to going to Sp

R
 in the boundary of H(Ws). This representation of the 

oscillator semigroup H̃(Ws) is for our purposes at least as important as the representa-
tion of Mp.

The goal of the present section is to lift all essential structures on H(Ws) to H̃(Ws).

3.2.1  Lifting the semigroup

We begin by recalling a few basic facts about covering spaces. If G is a connected Lie 
group, its universal covering space U carries a canonical group structure: an element 
u ∈ U  in the fiber over g ∈ G is a homotopy class u ≡ [αg ] of paths αg : [0, 1] → G 
connecting g with the neutral element e ∈ G; and an associative product U ×U → U , 
(u1,u2) �→ u1u2, is defined by taking u1u2 to be the unique homotopy class which is 
given by pointwise multiplication of any two paths representing the homotopy classes 
u1,u2. The fundamental group π1(G) ≡ π1(G, e) acts on U by monodromy, i.e., if 
[αg ] = u ∈ U  and [c] = γ ∈ π1(G), then one sets γ (u) := [αg ∗ c] ∈ U where αg ∗ c is the 
path from g to e which is obtained by composing the path αg with the loop c based at e. 
This π1(G)-action satisfies the compatibility condition γ1(u1)γ2(u2) = (γ1γ2)(u1u2) and 
in that sense is central.

The situation for our semigroup H(Ws) is analogous except for the minor com-
plication that the distinguished point e = Id does not lie in H(Ws) but lies in the clo-
sure of H(Ws). Hence, by the same principles, the universal cover U of H(Ws) comes 
with a product operation and there is a central action of π1(H(Ws)) on U. Moreover, 
the product U ×U → U still is associative. To see this, first notice that the subsemi-
group T+ ⊂ H(Ws) is simply connected and as such is canonically embedded in U. Then 
for u1,u2,u3 ∈ U  observe that u1(u2u3) = γ ((u1u2)u3) where γ ∈ π1(H(Ws)) could 

h �→ (h
√
π ′(h)

−1
,
√
π ′(h)), resp. h �→ (h−1

√
π(h),

√
π(h)).
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theoretically depend on the uj. However, any such dependence has to be continuous and 
the fundamental group is discrete, so in fact γ is independent of the uj and, since γ is the 
identity when the uj are in T+ (lifted to U), the associativity follows.

Let now Ŵ ≃ 2Z denote the subgroup of index two in π1(H(Ws)) ≃ Z and consider 
H̃(Ws) := U/Ŵ, which is our object of interest. Since the Ŵ-action on U is central, i.e., 
γ1(u1)γ2(u2) = (γ1γ2)(u1u2) for all γ1, γ2 ∈ Ŵ and u1,u2 ∈ U , the product U ×U → U 
descends to a product U/Ŵ ×U/Ŵ → U/Ŵ. Thus U/Ŵ = H̃(Ws) is a semigroup, and 
the situation at hand is summarized by the following statement.

Proposition 3.4 The 2:1 covering τH : U/Ŵ = H̃(Ws) → H(Ws), [αh]Ŵ �→ h, is a 
homomorphism of semigroups.

3.2.2  Actions of the metaplectic group

Recall that we have two 2:1 coverings: a homomorphism of groups τ : Mp → Sp
R

, 
along with a homomorphism of semigroups τH : H̃(Ws) → H(Ws). Now, a pair of ele-
ments (g ′, g) ∈ Sp

R
× Sp

R
 determines a transformation h �→ g ′hg−1 of H(Ws), and by 

the homotopy lifting property of covering maps a corresponding action of Mp×Mp on 
H̃(Ws) is obtained as follows.

Consider the canonical mapping Mp×M → Sp
R
×M given by τ. By the real-analytic 

diffeomorphism Sp
R
×M → H(Ws), (g ,m) �→ gm, this map can be regarded as a 2:1 

covering of H(Ws), and since any two 2:1 coverings are isomorphic we get an identifica-
tion of the covering space H̃(Ws) with Mp×M. Moreover, the action of the group Mp 
on itself by left translations induces on Mp×M ≃ H̃(Ws) an Mp-action which, by con-
struction, satisfies the relation

This can be viewed as a statement of Mp-equivariance of the covering map τH.
Now, we have another real-analytic diffeomorphism Sp

R
×M → H(Ws) by 

(g ,m) �→ mg−1, which transfers left translation in Sp
R

 to right multiplication on H(Ws) , 
and by using it we can repeat the above construction. The result is another identifica-
tion H̃(Ws) ≃ Mp×M and another Mp-action on H̃(Ws). Altogether we then have two 
actions of Mp on H̃(Ws). The essence of the next statement is that they commute.

Proposition 3.5 There is a real-analytic action (g1, g2) �→ (g1, g2) · h of Mp×Mp on 
H̃(Ws) such that the covering τH : H̃(Ws) → H(Ws) is (Mp×Mp)-equivariant:

Proof By construction, the stated equivariance property of τH holds for each of the two 
actions of Mp separately. It then follows that it holds for all (g1, g2) ∈ Mp×Mp if the two 
actions commute. But by τH ((g1, e) · h) = τ (g1)τH (h) and τH ((e, g2) · h) = τH (h)τ (g2)

−1 
the commutator

τH (g · h) = τ (g)τH (h) (g ∈ Mp , h ∈ H̃(Ws)).

τH ((g1, g2) · h) = τ (g1)τH (h)τ (g2)
−1 .

g := (g1, e)(e, g2)(g1, e)
−1(e, g2)

−1
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acts trivially on H(Ws) by τH, i.e., τH (g · h) = τH (h). Therefore g can be regarded as being 
in the covering group τ−1(Id) = Z2 of the covering τ : Mp → Sp

R
. Since we can con-

nect both g1 and g2 to the identity e ∈ Mp by a continuous curve, it follows from the 
discreteness of Z2 that g ∈ Mp×Mp acts trivially on H̃(Ws).  �

Notice that since the submanifold M ⊂ H(Ws) is simply connected, there exists a 
canonical lifting of M (which we still denote by M) to the cover H̃(Ws); this is the unique 
lifting by which T+ ⊂ M is embedded as a subsemigroup in H̃(Ws). Proposition 3.5 then 
allows us to write H̃(Ws) = Mp.M.Mp.

3.2.3  Lifting involutions

Let us now turn to the issue of lifting the various involutions at hand. As a first remark, 
we observe that any Lie group automorphism ϕ : Sp

R
→ Sp

R
 uniquely lifts to a Lie 

group automorphism ϕ̃  of the universal covering group S̃p
R

, and the latter induces an 
automorphism of the fundamental group π1(SpR) ≃ Z viewed as a subgroup of the 
center of S̃p

R
. Now Aut(π1(SpR)) ≃ Aut(Z) ≃ Z2 and both elements of this automor-

phism group stabilize the subgroup Ŵ ≃ 2Z in π1(SpR). Therefore ϕ̃  induces an automor-
phism of Mp = S̃p

R
/Ŵ.

Since the operation h �→ h−1 canonically lifts from Sp
R

 to Mp and h �→ (h−1)† is a Lie 
group automorphism of Sp

R
, it follows that Hermitian conjugation h �→ h† has a natural 

lift to Mp. The same goes for the Lie group automorphism h �→ shs of Sp
R

.

Proposition 3.6 Hermitian conjugation h �→ h† and the involution h �→ shs lift to 
unique maps with the property that they stabilize the lifted manifold M. In particular, the 
basic anti-holomorphic map ψ : H(Ws) → H(Ws), h �→ σ(h−1) = sh†s lifts to an anti-
holomorphic map ψ̃ : H̃(Ws) → H̃(Ws) which is the identity on M and Mp×Mp-equiv-
ariant in that ψ̃(g1x g

−1
2 ) = g2ψ̃(x)g−1

1  for all g1, g2 ∈ Mp and x ∈ H̃(Ws).

Proof Recall that the simply connected space M ⊂ H(Ws) has a canonical lifting (still 
denoted by M) to H̃(Ws). Since all of our involutions stabilize M as a submanifold of 
H(Ws), they are canonically defined on the lifted manifold M. In particular, the involu-
tion ψ on M is the identity map, and therefore so is the lifted involution ψ̃.

Note furthermore that the involution defined by h �→ shs is holomorphic on H(Ws) 
and that the other two are anti-holomorphic. Now H̃(Ws) is connected and the lifted 
version of M is a totally real submanifold of H̃(Ws) with dimR M = dimC H̃(Ws). In such 
a situation the identity principle of complex analysis implies that there exists at most one 
extension (holomorphic or anti-holomorphic) of an involution from M to H̃(Ws). There-
fore, it is enough to prove the existence of extensions.

Since h ∈ H̃(Ws) is uniquely representable as h = gm with g ∈ Mp and m ∈ M, the 
involution h �→ h† is extended by gm �→ (gm)† = m†g†. Similarly, h �→ shs extends by 
gm �→ (sgs)(sms), and h �→ sh†s does so by the composition of the other two.

The equivariance property of ψ̃ follows from the fact that g �→ sg†s on Mp coincides 
with the operation of taking the inverse, g �→ g−1.  �
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3.3  Oscillator semigroup representation

Here we construct the fundamental representation of the semigroup H̃(Ws) on the Hil-
bert space AV , which in the present context we call Fock space. Our approach is parallel 
to that of Howe [11]: the Fock space we use is related to the L2-space of Howe’s work by 
the Bargmann transform [9]. (Using the language of physics one would say that Howe 
works with the position space wave function while our treatment relies on the phase 
space wave function.) In particular, following Howe we take advantage of a realization 
of H(Ws) as the complement of a certain determinantal variety in the Siegel upper half 
plane.

3.3.1  Cayley transformation

Let us begin with some background information on the Cayley transformation, which is 
defined to be the meromorphic mapping

If g ∈ Sp, then from A(gw, gw′) = A(w,w′) we have

for all w,w′
∈ W . By assuming that (IdW − g) is invertible and then replacing w and w′ 

by (IdW − g)−1w resp. (IdW − g)−1w′, we see that C maps the complement of the deter-
minantal variety {g ∈ Sp | Det(IdW − g) = 0} into sp.

The inverse of the Cayley transformation is given by

Reversing the above argument, one shows that if (X + IdW ) is invertible and X ∈ sp, 
then C−1(X) ∈ Sp. Moreover, by the relation X + IdW = 2(IdW − g)−1 for C(g) = X, if 
IdW − g is regular, then so is X + IdW , and vice versa. Thus if we introduce the sets

the following is immediate.

Proposition 3.7 The Cayley transformation defines a bi-holomorphic map

Now we consider the restriction of C to the semigroup H(Ws). Letting † be the Her-
mitian conjugation of the previous section, denote by Re(X) = 1

2 (X + X†) the real part 
of an operator X ∈ End(W ) and define the associated Siegel upper half space S to be 
the subset of elements X ∈ End(W ) which are symmetric with respect to the canoni-
cal symmetric bilinear form S on W = V ⊕ V ∗ with Re(X) > 0. Notice the relations 
S(w,w′) = A(w, sw′) and A(sw, sw′) = −A(w,w′), from which it is seen that X is sym-
metric if and only if sX ∈ sp. Define DS := {X ∈ S | Det(sX + IdW ) = 0}, let

C : End(W ) → End(W ), g �→
IdW + g

IdW − g
.

A((IdW + g)w , (IdW − g)w′)+ A((IdW − g)w , (IdW + g)w′) = 0

g = C−1(X) =
X − IdW

X + IdW
.

DSp := {g ∈ Sp | Det(IdW − g) = 0} , Dsp := {X ∈ sp | Det(X + IdW ) = 0} ,

C : Sp\DSp → sp\Dsp.

ζ+s := S\DS ,
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and define a slightly modified Cayley transformation by

Translating Proposition 3.7, it follows that a defines a bi-holomorphic map from Sp\DSp 
onto the set of S-symmetric operators with DS removed.

Proposition 3.8 The modified Cayley transformation a : Sp\DSp → End(W ) given by 
g �→ s (IdW + g)(IdW − g)−1 restricts to a bi-holomorphic map

This result is an immediate consequence of the following identity.

Lemma 3.3 For g ∈ Sp\DSp let a(g) = X and define Y := (sX + IdW )−1. Then

In particular, one has the following equivalence:

Proof It is convenient to rewrite s − g†sg as

Using a(g) = X one directly computes that

The desired identity follows by inserting these relations in the previous equation.  �

Remark 3.3 The modified Cayley transformation intertwines the anti-holomorphic 
involution ψ : h �→ sh†s with the operation of taking the Hermitian conjugate X �→ X†:

Since ζ+s  is obviously stable under Hermitian conjugation, this is another proof of the 
stability of H(Ws) under the involution ψ; cf. Corollary 3.2.

3.3.2  Construction of the semigroup representation

Let us now turn to the main goal of this section. Recall that we have a Lie algebra repre-
sentation of sp on a(V ) = S(V ∗) which is defined by its canonical embedding in w2(W ) . 
We shall now construct the corresponding representation of the semigroup H̃(Ws) on 
the Fock space AV .

It will be seen later that the character of this representation on the lifted toral semi-
group T+ is Det−

1
2 (s − sh). This extends to M = Int(Mp)T+ by the invariance of the 

a(g) := s
IdW + g

IdW − g
.

a : H(Ws) → ζ+s .

1

2
(s − g†sg) = Y †(X + X†)Y .

(
Re(X) > 0 and Det(sX + IdW ) �= 0

)
⇔ s − g†sg > 0.

s − g†sg =
1
2 (IdW − g†)s(IdW + g)+ 1

2 (IdW + g†)s(IdW − g) .

1
2 (IdW − g) = (sX + IdW )−1 and 1

2 (IdW + g) = (sX + IdW )−1sX .

a(ψ(h)) = a(h)†.
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character with respect to the conjugation action of Mp. Since H̃(Ws) is connected and M 
is totally real of maximal dimension in H̃(Ws), the identity principle then implies that if 
a semigroup representation of H̃(Ws) can be constructed with a holomorphic character, 
this character must be given by the square root function h �→ Det−

1
2 (s − sh).

There is no difficulty discussing the square root on the simply connected submani-
fold M. However, in order to make sense of the square root function on the full semi-
group, we must lift all considerations to H̃(Ws). For convenience of notation, given 
h ∈ H(Ws) we let ah := a(h), and for x ∈ H̃(Ws) we simply write ax ≡ a(τH (x)) where 
τH : H̃(Ws) → H(Ws) is the canonical covering map. Then we put

and wish to define φ : H̃(Ws) → C to be the square root of f which agrees with the posi-
tive square root on T+. (Here we regard T+ as being in H̃(Ws) by its canonical lifting as a 
subsemigroup of H(Ws) as in the previous section). This is possible because φ is naturally 
defined on {(ξ , η) ∈ H(Ws)× C | f (ξ) = η2} which is itself a 2:1 cover of H(Ws). Since 
up to equivariant equivalence there is only one such covering, namely H̃(Ws) → H(Ws) , 
it follows that we may define φ on H̃(Ws) as desired. For the construction of the oscilla-
tor representation it is useful to observe that φ can be extended to a slightly larger space. 
This extension is constructed as follows.

Regard the complex symplectic group Sp as the total space of an Sp
R

-principal bundle 
π : Sp → π(Sp), g �→ gσ(g−1). Recall that the restricted map π : M → M is a diffeo-
morphism, and that M contains the neutral element Id ∈ Sp in its boundary. We choose 
a small ball B centered at Id in the base π(Sp), and using the fact that M can be iden-
tified with a cone in ispR we observe that A := B ∪ M ⊂ π(Sp) is contractible. Now 
U := π−1(A) is diffeomorphic to a product Sp

R
× A and thus comes with a 2:1 covering 

Ũ → U defined by τ : Mp → Sp
R

. The covering space Ũ contains H̃(Ws), and is invar-
iant under the Mp-action by right multiplication. By construction it also contains the 
metaplectic group Mp, which covers the group Sp

R
 in Sp.

Recall the definition of the determinant variety DSp = {g ∈ Sp | Det(IdW − g) = 0}. 
Let D̃Sp denote the set of points in Ũ which lie over DSp ∩U by the covering Ũ → U .

Proposition 3.9 There is a unique continuous extension of φ from H̃(Ws) to its closure 
in Ũ so that φ2 agrees with the lift of f from U. The intersection of D̃Sp with any Mp-orbit 
in Ũ is nowhere dense in that orbit and the restriction of the extended function φ to the 
complement of that intersection is real-analytic.

Remark 3.4 Before beginning the proof, it should be clarified that at the points 
of the lifted determinant variety, i.e., where the lifted square root φ of the function 
f (g) = Det(2s (IdW − g)−1) has a pole, continuity of the extension means that the recip-
rocal of φ extends to a continuous function which vanishes on that set.

Proof The intersection of DSp with any Sp
R

-orbit in U is nowhere dense in that orbit; 
therefore the same holds for the intersection of D̃Sp with any Mp-orbit in Ũ .

f (h) := Det(ah + s) = Det(2s(IdW − h)−1),
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Let x ∈ Ũ\D̃Sp be a point of the boundary of H̃(Ws). Choose a local contractible sec-
tion � ⊂ Ũ  of Ũ → A with x ∈ � and a neighborhood � of the identity in Mp so that 
the map �×� → Ũ , (g , s) �→ sg−1, realizes �×� as a neighborhood Ṽ  of x which has 
empty intersection with D̃Sp. By construction Ṽ ∩ H̃(Ws) is connected and is itself sim-
ply connected. Thus the desired unique extension of φ exists on Ṽ . At x this extension 
is simply defined by taking limits of φ along arbitrary sequences {xn} from H̃(Ws). Thus 
the extended function (still called φ) is well-defined on the closure of H̃(Ws) and is real-
analytic on the complement of D̃Sp in every Mp-orbit in that closure. It extends as a con-
tinuous function on the full closure of H̃(Ws) by defining it to be identically ∞ on D̃Sp, 
i.e., its reciprocal vanishes identically at these points.  �

Now let us proceed with our main objective of defining the semigroup representation 
on H̃(Ws). Recall the involution ψ : H(Ws) → H(Ws), h �→ σ(h)−1, and its lift ψ̃ to 
H̃(Ws). The following will be of use at several points in the sequel.

Proposition 3.10 φ ◦ ψ̃ = φ.

Proof By direct calculation, f ◦ ψ = f . Thus, since f = φ2, we have either φ ◦ ψ̃ = φ 
or φ ◦ ψ̃ = −φ. The latter is not the case, as φ is not purely imaginary on the non-empty 
set Fix(ψ̃).  �

The semigroup representation R : H̃(Ws) → End(AV ) will be given by a certain aver-
aging process involving the standard representation of the Heisenberg group. The latter 
representation is defined as follows. For elements w = v + cv of the real vector space 
WR , the operator δ(v)+ µ(cv) is self-adjoint and its exponential

converges and is unitary (see, e.g., [15]). These operators satisfy the relation

where ω := iA|WR
 is the induced real symplectic structure. If T �→ T † denotes the 

adjoint operation in End(AV ), it follows from δ(v)† = µ(cv) that

Thus if H := WR × U1 is equipped with the Heisenberg group multiplication law,

then (w, z) �→ z Tw is an irreducible unitary representation of H on AV . It is well known 
that up to equivariant isomorphisms there is only one such representation.

The oscillator representation x �→ R(x) of H̃(Ws) is now defined by

Here dvol is the Euclidean volume element on WR which we normalize so that

Tv+cv := eiδ(v)+iµ(cv)

(3.2)TwTw′ = Tw+w′ e
i
2ω(w,w

′) (w,w′
∈ WR),

T †
w = T−w = T−1

w (w ∈ WR).

(w, z) (w′, z′) := (w + w′, z z′e
i
2ω(w,w

′)),

R(x) =

∫

WR

γx(w)Tw dvol(w), γx(w) := φ(x) e−
1
4 �w, axw� .
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It should be stressed that we often parameterize WR ≃ V  by the map v �→ v + cv = w.
Notice that by the positivity of Re(ax) the Gaussian function w �→ γx(w) decreases 

rapidly, so that all integrals involved in the discussion above and below are easily seen 
to converge. In particular, since the unitary operator Tw (for w ∈ WR) has L2-norm 
�Tw� = 1, it follows for any x ∈ H̃(Ws) that

where the bound C(x) by direct computation of the integral is a finite number:

Thus R(x) is a bounded linear operator on AV . In Proposition 3.17 we will establish the 
uniform bound �R(x)� ≤ C(x) < 1 for all x ∈ M. It is also clear that the operator R(x) 
depends continuously on x ∈ H̃(Ws).

The main point now is to prove the semigroup multiplication rule R(xy) = R(x)R(y). 
For this we apply the Heisenberg multiplication formula (3.2) to the inner integral of

to see that R(xy) = R(x)R(y) is equivalent to the multiplication rule γxy = γx♯γy where 
the right-hand side means the twisted convolution

For the proof of the formula γx♯γy = γxy, we will need to know that φ transforms as

This transformation behavior, in turn, follows directly from the expression for the semi-
group multiplication rule transferred to the upper half space ζ+s ; we record this expres-
sion in the following statement and refer to [11], p. 78, for the calculation.

Proposition 3.11 Identifying H(Ws) with ζ+s  by the modified Cayley transformation 
and denoting by (X ,Y ) �→ X ◦ Y  the semigroup multiplication on ζ+s , one has

Given Proposition 3.11, to prove the transformation rule (3.5) just set X = ah and 
Y = ah′ and note that, since the semigroup multiplication law for H̃(Ws) by definition 
yields ah ◦ ah′ = ahh′, the first expression in (3.6) implies

∫

WR

e−
1
4 �w,w� dvol(w) = 1.

�R(x)� ≤ |φ(x)|

∫

WR

e−
1
4 �w,Re(ax)w� dvol(w) =: C(x),

(3.3)C(x) = |φ(x)|Det−1/2(Re(ax)) = 2dimC V

∣∣∣∣
Det(IdW − h)

Det(s − h†sh)

∣∣∣∣
1/2

, h = τH (x).

R(x)R(y) =

∫

WR

(∫

WR

γx(w − w′)γy(w
′)Tw−w′Tw′ dvol(w′)

)
dvol(w)

(3.4)γx♯γy(w) :=

∫

WR

γx(w − w′)γy(w
′) e

i
2ω(w,w

′) dvol(w′).

(3.5)φ(xy) = φ(x)φ(y)Det−
1
2 (ax + ay) .

(3.6)X ◦ Y + s = (Y + s)(X + Y )−1(X + s) = X + s − (X − s)(X + Y )−1(X + s) .
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where f (h) = Det(ah + s) as above. The transformation rule for φ follows by taking the 
square root of (3.7). As usual, the sign of the square root is determined by taking the 
positive sign at points of the lift of T+ in H̃(Ws).

Now we come to the main point.

Proposition 3.12 The twisted convolution for x, y ∈ H̃(Ws) satisfies γx♯γy = γxy.

Proof Observe that the phase factor for w ,w′
∈ WR can be reorganized as

Inserting the definitions of γx and γy in γx♯γy we then have

Since Re(ax + ay) > 0, the integrand is a rapidly decreasing function of w′
∈ WR and 

convergence of the integral over the domain WR is guaranteed.
We now wish to explicitly compute the integral by completing the square and shifting 

variables. For this it is a useful preparation to write

and similarly for the other terms. We then holomorphically extend the right-hand side to 
w′ in W, and by making a shift of integration variables

we bring the convolution integral into the form

where ax ◦ ay = −s + (ay + s)(ax + ay)
−1(ax + s) = ax − (ax − s)(ax + ay)

−1(ax + s) is 
the semigroup multiplication on ζ+s . Using A(w, sw′) = �w,w′

� for w ∈ WR and the defin-
ing relation ax ◦ ay = axy, we see that the first factor on the right-hand side is e−

1
4 �w, axyw�. 

By the transformation rule (3.5) the integral is evaluated as

and multiplying factors it follows that

which is the desired semigroup property.  �

Corollary 3.5 The mapping R : H̃(Ws) → End(AV ) defined by

(3.7)f (hh′) = f (h)f (h′)Det−1(ah + ah′),

e
i
2ω(w,w

′)
= e−

1
2A(w,w

′)
= e

1
4 �w

′, sw�− 1
4 �w, sw

′� .

γx♯γy(w) = φ(x)φ(y) e−
1
4 �w, axw�

∫
e−

1
4 �w

′,(ax+ay)w
′�+

1
4 �w

′,(ax+s)w�+ 1
4 �w,(ax−s)w′� dvol(w′) .

�w′, axw� = A(w′, saxw) (w′
∈ WR),

w′
→ w′

+ (ax + ay)
−1(ax + s)w,

γx♯γy(w) = e−
1
4A(w, s(ax◦ay)w)φ(x)φ(y)

∫

WR

e−
1
4A(w

′, (sax+say)w
′) dvol(w′),

∫

WR

e−
1
4 �w

′, (ax+ay)w
′
� dvol(w′) = Det−1/2(ax + ay) =

φ(xy)

φ(x)φ(y)
,

γx♯γy(w) = φ(xy) e−
1
4 �w, axyw� = γxy(w) ,
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is a representation of the semigroup H̃(Ws).
We conclude this section by deriving a formula for the adjoint.

Proposition 3.13 The adjoint of R(x) is computed as R(x)† = R(ψ̃(x)). In particular, 
R(x)R(x)† = R(x ψ̃(x)).

Proof We recall the relations φ = φ ◦ ψ̃ from Proposition 3.10 and (ah)† = aψ(h) from 
Remark 3.3. Since �w, ahw� = �w, (ah)

†w�, it follows that

The desired formula, R(x)† = R(ψ̃(x)), now results from this equation and the iden-
tities T †

w = T−w and γx(−w) = γx(w). With this in hand, the second statement 
R(x)R(x)† = R(x ψ̃(x)) is a consequence of the semigroup property.  �

3.3.3  Basic conjugation formula

Here we compute the effect of conjugating (in the semigroup sense) operators of the 
form q(w), w ∈ W , with operators R(x) coming from the semigroup. This is an immedi-
ate consequence of an analogous result for the operators Tw. For this we first allow Tw to 
be defined for w = v + ϕ ∈ W  by

These operators are no longer defined on Fock space, but are defined on O(V ). They 
satisfy

Note that for x ∈ H̃(Ws) and w ∈ W  the operators R(x)Tw and TτH (x)wR(x) are bounded 
on AV . Thus we interpret the following as a statement about operators on that space.

Proposition 3.14 For w ∈ W  and x ∈ H̃(Ws) one has the relation

Proof For convenience of notation we write

Thus

R(x) =

∫

WR

γx(w)Tw dvol(w)

γx = γ
ψ̃(x) .

Tw := eiq(w) = eiδ(v)+iµ(ϕ).

(3.8)TwTw̃ = Tw+w̃ e−
1
2A(w,w̃) .

R(x)Tw = TτH (x)wR(x) .

R(x) = φ(x)

∫

WR

e−
1
4A(w̃, saxw̃)Tw̃ dvol(w̃) .

R(x)Tw = φ(x)

∫

WR

e−
1
4A(w̃, saxw̃)−

1
2A(w̃,w)Tw̃+w dvol(w̃) .
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Now let h := τH (x) and change variables by the translation w̃ �→ w̃ − w + hw. Using the 
definition sax = (IdW + h)(IdW − h)−1 and the relation

for all w1,w2 ∈ W , one simplifies the exponent to obtain

Reading (3.8) backwards one sees that this expression equals ThwR(x).  �

The basic conjugation rule now follows immediately.

Proposition 3.15 For every x ∈ H̃(Ws) and w ∈ W  it follows that

Proof Apply Proposition 3.14 for w replaced by tw and differentiate both sides of the 
resulting formula at t = 0.  �

3.3.4  Spectral decomposition and operator bounds

Numerous properties of R are derived from a precise description of the spectral decom-
position of R(x) for x ∈ M. Since every orbit of Sp

R
 acting by conjugation on M has 

non-empty intersection with T+, it is important to understand this decomposition when 
x ∈ T+. For this we begin with the case where V is one-dimensional.

Proposition 3.16 Suppose that V is one-dimensional and that the T+-action on 
W = V ⊕ V ∗ is given by x · (v + ϕ) = �v + �

−1ϕ where � > 1. If f is a basis vector of V ∗ 
then the monomials {f m}m∈N∪{0} form a basis of AV  and one has

Proof First note that if w = v + cv, then

Thus the Gaussian function γx(w) in the present case is

To apply the operator Tv+cv to f m we use the description

A((IdW − h)w1, (IdW + h)w2) = −A((IdW + h)w1, (IdW − h)w2)

R(x)Tw = φ(x)

∫

WR

e−
1
4A(w̃, saxw̃)−

1
2A(hw,w̃)Thw+w̃ dvol(w̃) .

R(x)q(w) = q(τH (x)w)R(x) .

R(x)f m = �
−m−1/2f m.

(3.9)axw = s
1+ x

1− x
· (v + cv) = −

1+ �

1− �
v +

1+ �
−1

1− �−1
cv =

�+ 1

�− 1
(v + cv).

γx(v + cv) = φ(x) e−
1
2
�+1
�−1 |v|

2

.

Tv+cv = eiδ(v)+iµ(cv)
= eiµ(cv)e−

1
2 |v|

2
eiδ(v) .
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Decomposing Tv+cv in this way is not allowed on the Fock space, but is allowed if we 
regard Tv+cv as an operator on the full space O(V ) of holomorphic functions. The calcu-
lations are now carried out on this larger space.

Recall that δ(v)f m = mf (v)f m−1. From this we obtain the explicit expression

Our goal is to compute

where dvol(v) corresponds to dvol(w) by the isomorphism V ≃ WR. Expanding the 
exponential eiµ(cv) and using µ(cv)f m = |v|2f (v)−1f m+1, the integral I is a sum of Gauss-
ian expected values of terms of the form |v|2k f (v)−k f (v)l. The only terms which survive 
are those with k = l. Thus

Now φ(x)2 = Det(ax + s) = Det(2s(IdW − τH (x))
−1) = (−2/(1− �))(2/(1− �

−1)), 
and φ(x) = 2�−1/2(1− �

−1)−1, since we are to take the positive square root at points 
x ∈ T+. Hence, R(x)f m = φ(x)2−1(1− �

−1)�−mf m = �
−m−1/2f m as claimed. �

Remark 3.5 Note that as x ∈ T+ goes to the unit element (or, equivalently, � → 1), the 
expression R(x)f m converges to f m in the strong sense for all m ∈ N ∪ {0}.

Now let V be of arbitrary dimension and assume that x ∈ T+ is diagonalized on 
W = V ⊕ V ∗ in a basis {e1, . . . , ed , ce1, . . . , ced} with eigenvalues �1, . . . �d , �−1

1 , . . . , �−1
d  

respectively. Since x ∈ T+, we have �i > 1 for all i. For fi := cei and m := (m1, . . . ,md) 
we employ the standard multi-index notation f m := f

m1
1 · · · f

md

d  and �m := �
m1
1 · · · �

md

d  . 
In this case the multi-dimensional integrals split up into products of one-dimensional 
integrals. Thus, the following is an immediate consequence of the above.

Corollary 3.6 Let x ∈ T+ be diagonal in a basis {ei} of V with eigenvalues �i 
(i = 1, . . . , d ). If f m is a monomial f m ≡

∏
i(cei)

mi, then R(x)f m = �
−m−1/2f m.

One would expect the same result for the spectrum to hold for every conjugate 
gT+g

−1 , and this expectation is indeed borne out. However, in the approach we are 
going to take here, we first need the existence and basic properties of the oscillator rep-
resentation of the metaplectic group. The following is a first step in this direction.

Proposition 3.17 The operator norm function Mp× T+ → R>0, (g , t) �→ �R(g tg−1)� 
is bounded by a continuous Mp-independent function C(t) < 1.

Tv+cvf
m
= e−

1
2 |v|

2
eiµ(cv)

m∑

l=0

il

l!
m(m− 1) · · · (m− l + 1)f (v)l f m−l .

I :=

∫

V
e−

1
2
�+1
�−1 |v|

2

Tv+cvf
m dvol(v),

I = f m
m∑

k=0

(−1)k
(
m
k

)∫

V

|v|2k

k!
e−

�

�−1 |v|
2

dvol(v)

= 2−1
m∑

k=0

(−1)k
(
m
k

)(
�− 1

�

)k+1

f m = 2−1(1− �
−1)�−mf m.
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Proof For any x ∈ H̃(Ws) we already have the bound �R(x)� ≤ C(x) where C(x) was 
computed in (3.3). That function C(x) clearly is invariant under conjugation x �→ gxg−1 
by g ∈ Mp. Evaluating it for the case of an element x ≡ t ∈ T+ with eigenvalues �i one 
obtains

The inequality C(t) < 1 now follows from the fact that �i > 1 for all i.  �

Since R(x)† = R(ψ̃(x)) and �R(tg)�2 = �R(tg)†R(tg)� = �R(g−1t2g)�, we infer the fol-
lowing estimates.

Corollary 3.7 For all t ∈ T+ and g ∈ Mp one has ‖R(tg)‖ < 1 and ‖R(gt)‖ < 1.

3.4  Representation of the metaplectic group

Recall that we have realized the metaplectic group Mp in the boundary of the oscil-
lator semigroup H̃(Ws) and that H̃(Ws) contains the lifted manifold T+ in such a way 
that the neutral element Id ∈ Mp is in its boundary. Here we show that for x ∈ T+ and 
g ∈ Mp the limit limx→Id R(gx) is a well-defined unitary operator R′(g) on Fock space 
and R′

: Mp → U(AV ) is a unitary representation. The basic properties of this oscillator 
representation are then used to derive important facts about the semigroup representa-
tion R.

Convergence will eventually be discussed in the so-called bounded strong* topology 
(see [11], p. 71). For the moment, however, we shall work with the slightly weaker notion 
of bounded strong topology where one only requires uniform boundedness and point-
wise convergence of the operators themselves (with no mention made of their adjoints). 
Note that since ‖R(gx)‖ < 1 by Corollary 3.7, we need only prove the convergence of 
R(gx) f on a dense set of functions f ∈ AV . Let us begin with g = Id.

Lemma 3.4 If a sequence xn ∈ T+ converges to Id ∈ Mp, then the sequence R(xn) con-
verges in the bounded strong topology to the identity operator on Fock space.

Proof If f is any T+-eigenfunction, the sequence R(xn)f  converges to f by the explicit 
description of the spectrum given in Corollary 3.6. The statement then follows because 
the subspace generated by these functions is dense.  �

Using this lemma along with the semigroup property, we now show that the limiting 
operators exist and are well-defined.

Proposition 3.18 If xn ∈ T+ converges to Id ∈ Mp, then for every g ∈ Mp the sequence 
of operators R(gxn) converges pointwise, i.e., R(gxn)f → R′(g)f  for all f in AV . The limit-
ing operator R′(g) is independent of the sequence {xn}.

C(t) = 2dimC V
∏

i

(
�
1/2
i + �

−1/2
i

)−1
.
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Proof For any m, n ∈ N there exists some t = t(m, n) ∈ T+ sufficiently near the iden-
tity so that x̃m = t−1xm and x̃n = t−1xn are still in T+. By the semigroup property 
R(gxn) = R(gt)R(x̃n) we then have

Letting t = t(m, n) → Id it follows from Corollary 3.7 that

Thus the Cauchy property of R(xn)f  is passed on to R(gxn)f  and therefore the sequence 
R(gxn)f  converges in the Hilbert space AV . Let limn→∞ R(gxn)f =: R′(g)f .

To show that the limit is well-defined, pick from T+ another sequence yn → Id, let 
limn→∞ R(gyn)f =: R′′(g)f , and notice that �R′(g)f − R′′(g)f � is no bigger than

Using the same reasoning as above, the middle term is estimated as

In the limit n → ∞ this yields the desired result R′(g) = R′′(g). �

Remark 3.6 Since ‖R(gxn)‖ < 1 the sequence R(gxn) converges to R′(g) in the bounded 
strong topology. Such convergence preserves the product of operators, which is to say 
that if An → A and Bn → B, then AnBn → AB. Indeed,

and convergence follows from ‖An‖ < 1 and An → A, Bn → B. Note in particular that if 
R(gxn) → R′(g) and R(g−1xn) → R′(g−1) then R(gxn)R(g−1xn) → R′(g)R′(g−1).

The bounded strong∗ topology also requires pointwise convergence of the sequence of 
adjoint operators. Therefore we must also consider sequences of the form R(gxn)†. For 
this (see the proof of Theorem 3.1 below) we will use the following fact.

Lemma 3.5 Let {An} and {Bn} be sequences of bounded operators and let Cn := AnBn. If 
Cn and Bn converge pointwise with Bn → B and the sequence {An} is uniformly bounded, 
then An converges pointwise on the image of B.

Proof If f ∈ imB then f = lim fn where fn = Bnh for some Hilbert vector h. Write

and use the uniform boundedness of An to show that Anf  converges. �

Applying this with An = R(gxng
−1), Bn = R(xn) , and Cn = AnBn = R(gxn)R(g

−1xn), 
we have the following statement about convergence along the conjugate gT+g

−1.

Proposition 3.19 For g ∈ Mp and {xn} any sequence in T+ with xn → Id ∈ Mp, it fol-
lows that R(gxng−1) converges pointwise to R′(g)R′(g−1).

�R(gxm)f − R(gxn)f � ≤ �R(gt)� �R(x̃m)f − R(x̃n)f � .

�R(gxm)f − R(gxn)f � ≤ �R(xm)f − R(xn)f � .

�R′(g)f − R(gxn)f � + �R(gxn)f − R(gyn)f � + �R(gyn)f − R′′(g)f �.

�R(gxn)f − R(gyn)f � ≤ �R(xn)f − R(yn)f � ≤ �R(xn)f − f � + �R(yn)f − f �.

�(AnBn − AB)f � ≤ �An(Bn − B)f � + �(An − A)Bf �,

(Am − An)f = Am(f − fm)+ (AmBm − AnBn)h+ An(fn − f )
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Next, if we take three sequences in T+ and write

then it follows that the sequence R(xng−1) converges to an operator B(g−1) on the 
image of R′(g)R′(g−1)R′(g) with B(g−1)R′(g)R′(g−1)R′(g) = IdAV . In particular, the 
operator R′(g) is injective for all g ∈ Mp. Finally, we define yn by y2n = xn and write 
R(gxn) = R(gyng

−1)R(gyn). Taking the limit of both sides of this equation entails that

and since R′(g) is injective, this now allows us to reach the main goal of this section.

Theorem  3.1 For every g ∈ Mp and every sequence {xn} ⊂ T+ with xn → Id the 
sequence {R(gxn)} converges in the bounded strong∗ topology. The limit R′(g) is independ-
ent of the sequence and defines a unitary representation R′

: Mp → U(AV ).

Proof From (3.11) we have R′(g)(IdAV − R′(g−1)R′(g)) = 0 and, since 
R′(g) is injective, R′(g−1)R′(g) = IdAV . Hence R′(g−1) is surjective, and thus 
R′(g) ∈ GL(AV ) by exchanging g ↔ g−1. For the homomorphism property we write 
R(g1xn)R(g2yn) = R(g1xng2yn) = R(g1xng

−1
1 )R(g1g2yn) and take limits to obtain 

R′(g1)R
′(g2) = R′(g1g2).

Convergence in the bounded strong∗ topology also requires convergence of the adjoint. 
This property follows from R(gxn)† = R(ψ̃(gxn)) = R(xng

−1) and the discussion after 
(3.10), since R′(g) is now known to be an isomorphism. Unitarity of the representation is 
then immediate from R(gxn)† → R′(g)† and R(xng−1) → B(g−1) = R′(g)−1.

Finally, we must show that R′
: Mp → U(AV ) is continuous. This amounts to show-

ing that if {gk} is a sequence in Mp which converges to g, then R′(gk)f → R′(g)f  for any 
f ∈ AV . Hence, we let {xn} be a sequence in T+ with xn → Id and choose t = t(m, n) as 
in the proof of Proposition 3.18 so that

and then let t → Id. Using the uniform boundedness of R(gk t) as t → Id, this shows that 
the convergence R(gkxn) → R′(gk) is uniform in gk. Since we have gkxn → gxn for every 
fixed n, the continuity of x �→ R(x)f  then implies that R′(gk)f → R′(g)f .  �

Let us underline two important consequences.

Proposition 3.20 For g1, g2 ∈ Mp and x ∈ H̃(Ws) it follows that

Proof If ym and zn are sequences in T+ which converge to Id, then, since x �→ R(x)f  is 
continuous for all f in Fock space, R(g1ymx g2zn) converges pointwise to R(g1x g2). On the 
other hand, we have R(g1ymx g2zn) = R(g1ym)R(x)R(g2zn) by the semigroup property, 
and the right-hand side converges pointwise to R′(g1)R(x)R

′(g2).  �

(3.10)R(xnynzn) = R(xng
−1)R(gyng

−1)R(gzn) → IdAV ,

(3.11)R′(g) = R′(g)R′(g−1)R′(g),

�R(gkxm)− R(gkxn)� ≤ �R(gk t)� �R(x̃m)− R(x̃n)�,

R(g1x g2) = R′(g1)R(x)R
′(g2).
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We refer to R′
: Mp → U(AV ) as the oscillator representation of the metaplectic 

group. It has the following fundamental conjugation property.

Proposition 3.21 Let Mp×W → W , (g ,w) �→ τ (g)w denote the representation of Mp 
on W defined by first applying the covering map Mp → Sp

R
 and then the standard repre-

sentation of Sp. If we let W act on a(V ) by the Weyl representation q then

Proof Since the inverse operator R′(g)−1 is now available, this follows from the conju-
gation property at the semigroup level (see Proposition 3.15).  �

Note that analogously we have the classical conjugation formula for the representation 
of the Heisenberg group on the Fock space AV , i.e.,

for all g ∈ Mp and w ∈ WR (see Proposition 3.14).

3.4.1  The trace‑class property

Recall that a linear operator L on a Hilbert space V is of trace class if and only if the non-
negative self-adjoint operator 

√
LL† has finite trace. If L is of trace class, then for every 

unitary basis {ui} of V the trace

converges absolutely. It is independent of the choice of unitary basis and defines a linear 
functional on the space C1 of operators of trace class.

Proposition 3.22 For every x ∈ H̃(Ws) the operator R(x) is of trace class.

Proof Recall that R(x)R(x)† = R(y), where y = xψ̃(x) ∈ M. Since y = gt2g−1 for some 
t ∈ T+ and 

√
R(gt2g−1) = R′(g)R(t)R′(g)−1, the desired result follows from the explicit 

formula in Corollary 3.6 for the eigenvalues of t.

Proposition 3.23 An integral representation of the trace functional Tr : C1 → C on 
the space of trace-class operators on Fock space is given by

Proof By the relation w = v + cv we have Tw1 = Tv+cv1 = e−
1
2 |v|

2
+iµ(cv). As before, 

if {ei} is an orthonormal basis of V let fi := cei denote the dual basis of V ∗. Expanding 
eiµ(cv) with the help of multi-index notation m = (m1, . . . ,md) we get

R′(g)q(w)R′(g)−1
= q(τ (g)w) .

R′(g)TwR
′(g)−1

= Tτ(g)w

Tr L :=

∑
�ui , L ui�

Tr L =
√
2
dimWR

�(L), �(L) =

∫

WR

�Tw1, LTw1�AV dvol(w).

Tv+cv1 = e−
1
2 |v|

2 ∑ (iv)m

m!
f m,
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where m! = m1! · · ·md ! and f m = f
m1
1 · · · f

md

d . By the isomorphism V ≃ WR the integral 
�(L) pulls back to �(L) =

∫
V �Tv+cv1, LTv+cv1� dvol(v) and inserting the series expan-

sion of Tv+cv1 we obtain a double sum

If m �= m′ the integral vanishes, while direct computation for m = m′ yields

The normalization here is determined by our convention 
∫
V e−

1
2 |v|

2
dvol(v) = 1 . 

Thus 2dimCV�(L) =
∑

m!
−1

�f m, Lf m�. The formula for Tr L now follows from 
dimWR = 2 dimCV  and the fact that the set of normalized monomials {f m/

√
m!} consti-

tute an orthonormal basis of Fock space.  �

Proposition 3.24 For every P1,P2 in the Weyl algebra and every x ∈ H̃(Ws) the oper-
ator q(P1)R(x)q(P2) is of trace class on the Fock space AV . Furthermore, the function 
H̃(Ws) → C, x �→ Tr q(P1)R(x)q(P2), is holomorphic.

Proof Note that every element in H̃(Ws) can be written as a product xyz of elements in 
H̃(Ws). Accordingly we are going to show that operators of the form

are of trace class. Recall that the space of trace-class operators is a left and right ideal in 
the space of compact operators. It therefore suffices to prove that operators of the form 
B = q(P)R(x) are compact. By linearity it is enough to handle the special case where 
q(P) = µ(cv)kδ(v′)l for k , l ∈ N ∪ {0}. With respect to a basis of Fock space consisting 
of naturally defined monomials we will show that the matrix of BB† has finite trace. Thus 
the Hilbert–Schmidt norm �B�2HS := Tr(BB†) is finite. Since Hilbert–Schmidt operators 
are compact, the desired result follows.

For the computations we begin by observing that

where y = xψ̃(x) ∈ M. Let {ei} (resp. {fi}), 1 ≤ i ≤ d, be the basis of V (resp. dual basis of 
V ∗) so that R(y) is diagonalized, i.e., R(y)f m = �

−m−1/2f m. As before, we are using multi-
index notation and the numbers �i are the eigenvalues of y ∈ M on the basis vectors ei so 
that �i > 1 for all i. Let v =

∑
ai ei and v′ =

∑
bi ei. Thus

where the sums run over all multi-indices α and β with |α| = k and |β| = l.
After expanding q(P)R(y)q(P)† we have individual terms

�(L) =
∑ �f m, Lf m

′

�

m!m′!

∫

V
(−iv)m(iv)m

′

e−|v|2dvol(v) .

∫

V
vmvme−|v|2dvol(v) = 2−dimCVm!.

q(P1)R(xyz)q(P2) = (q(P1)R(x))R(y)(R(z)q(P2))

A := BB†
= q(P)R(x)R(x)†q(P)† = q(P)R(y)q(P)†,

δ(v′)l =
∑

bβ
∂β

∂f β
and µ(cv)k =

∑
aα f

α ,

C(α,β , α̃, β̃) := f α
∂β

∂f β
R(y)f β̃

∂α̃

∂f α̃
.
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Since we want to compute the trace of the matrix of A with respect to the basis of mono-
mials {f m}, we need only consider those operators C ≡ C(α,β , α̃, β̃) for which

Now we write Af m in the monomial basis and must estimate the coefficient of f m. We 
will do this by estimating the eigenvalue of C on f m for those C which satisfy (3.12), 
and will do so with an estimate Km independent of α,β , α̃, β̃. Hence we may eventually 
estimate this coefficient by N Km where N is the number of operators C(α,β , α̃, β̃) with 
multi-indices satisfying (3.12). Since N is bounded by a constant independent of m, it 
comes out as a factor in our estimate of TrA and is therefore of no relevance to the argu-
ment. Due to the fact that the vectors v =

∑
ai ei and v′ =

∑
bi ei are also fixed, it is 

enough to compute 
∑

m Km.
For those C which satisfy (3.12) it follows that Cf m = r �−(m−α+β)−1/2f m where

Now, using the inequality I !
(I−J )! ≤ |I ||J | and replacing each �i by the smallest eigenvalue 

�min, up to a constant independent of |m| = m1 + . . .+md we have

where p is a positive integer which does not depend on m.
To complete the computation, notice that the number of m with |m| = n is bounded by 

nd−1 times a constant. Therefore we get a finite sum

The holomorphicity follows by inserting L(x) = q(P1)R(x)q(P2) in the formula of Propo-
sition 3.23 and interchanging the ∂̄x-operator with the integral.  �

3.5  Compatibility with Lie algebra representation

We now show that the semigroup representation R : H̃(Ws) → End(AV ) is compatible 
with the sp-representation

Let h ∈ H(Ws) and Y ∈ sp. Then, since the semigroup H(Ws) is open in Sp, there exists 
some ε > 0 so that the curve [−ε, ε] ∋ t �→ etY h lies in H(Ws). Fix some point x ∈ τ−1

H (h) 
and let t �→ etY · x denote the lifted curve in H̃(Ws).

Lemma 3.6 For all x ∈ H̃(Ws) and all Y ∈ sp it follows that

(3.12)α − β = α̃ − β̃ .

r =
m!

(m− α̃)!

(m− α̃ + β̃)!

(m− α̃ + β̃ − β)!
.

r �−(m−α+β)−1/2
≤ const × |m|

p
�
−|m|

min =: Km,

∑
Km ≤ const ×

∞∑

n=0

np+d−1
�
−n
min < ∞.

sp
τ−1

−→w(W )
q

−→ gl(a(V )), a(V ) = S(V ∗).

d

dt

∣∣∣∣
t=0

R(etY · x) = q(τ−1(Y ))R(x).
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Proof Recall that the operator R(x) is the result of integrating the Heisenberg transla-
tions Tw against the Gaussian density γx(w) dvol(w). Thus

For w1,w2 ∈ W  the linear transformation Y : w �→ w1A(w2,w)+ w2A(w1,w) is in sp, 
and sp is spanned by such transformations. It is therefore sufficient to prove the state-
ment of the lemma for Y of this form. Hence let Y := w1A(w2, ·)+ w2A(w1, ·) and 
observe that the corresponding element in the Weyl algebra is

Now, defining Tw for w ∈ W  by Tw = eiq(w) as before, we have

Therefore, for w̃ := t1w1 + t2w2 consider the expression

Using Tw̃Tw = e−
1
2A(w̃,w)Tw̃+w and shifting integration variables w → w − w̃ we obtain

Comparing Eqs. (3.14,3.15) with (3.13) we see that the formula of the lemma is true if

But checking this equation is just a simple matter of computing derivatives. Recall that 
γx(w) = φ(x) e−

1
4A(w, saxw) and φ(x) = Det1/2(ax + s). Writing h := τH (x) and using 

Tr Y = 0 one computes the left-hand side to be

On substituting Y = w1A(w2, ·)+ w2A(w1, ·), this expression immediately agrees with 
the result of taking the two derivatives on the right-hand side.  �

4  Spinor–oscillator character
The purpose of this chapter is to introduce the character of the spinor–oscillator repre-
sentation of a certain super-semigroup (H̃ ,F) in the orthosymplectic Lie supergroup of 
W = V ⊕ V ∗

= W0 ⊕W1. A summary of this short chapter is as follows.
Referring to [1] and [12] for details, we begin by briefly recalling the basic notions 

of Lie supergroups (in this case semigroups) and their representations. Next, we recall 

(3.13)
d

dt

∣∣∣∣
t=0

R(etY · x) =

∫

WR

d

dt

∣∣∣∣
t=0

γ etY ·x(w)Tw dvol(w).

τ−1(Y ) = 1
2 (w1w2 + w2w1).

(3.14)q(τ−1(Y ))R(x) = −
d2

dt1dt2

∣∣∣∣
t1=t2=0

Tt1w1+t2w2R(x).

Tw̃R(x) =

∫

WR

γx(w)Tw̃Tw dvol(w).

(3.15)Tw̃R(x) =

∫

WR

γx(w − w̃) e−
1
2A(w̃,w)Tw dvol(w) .

d

dt

∣∣∣∣
t=0

γ etY ·x(w) = −
d2

dt1dt2

∣∣∣∣
t1=t2=0

γx(w − t1w1 − t2w2) e
−

1
2A(t1w1+t2w2,w).

d

dt

∣∣∣∣
t=0

γ etY ·x(w) = γx(w)
(
1
4Tr (Ysax)+

1
2A(h(1− h)−1w,Yh(1− h)−1w)

)
.



Page 53 of 73Huckleberry et al. Complex Analysis and its Synergies  (2016) 2:1 

from Sect. 2.6 the infinite-dimensional representation of the complex Lie superalge-
bra osp(W ) on the spinor–oscillator module AV  (a.k.a. Fock space). The complex Lie 
group G = SO(W1)× Sp(W0) associated to the even part of osp(W ) is the base mani-
fold of the associated Lie supergroup OSp. As a 2  :  1 covering space of the domain 
SO(W1)×H(Ws

0) in G, the semigroup H̃ := Spin(W1)×Z2 H̃(Ws
0) inherits complex 

supermanifold structure. The osp-representation is integrated to H̃ as a super-semigroup 
representation on AV . Using the character of a supergroup representation as a model, 
we introduce a superfunction χ on H̃ which we regard as the character of this semigroup 
representation. We refer to it as the spinor–oscillator character for short.

In the last subsection of the chapter we let V = U ⊗ CN and recall the setting of a 
Howe dual pair (g, k) = (osp(U ⊕U∗), oN ) or (osp(Ũ ⊕ Ũ∗), spN ). In this setting, we 
evaluate the spinor–oscillator character χ in two respects: (1) we Haar average it over 
K, which amounts to projecting from AV  to the submodule A K

V  of K-invariants, and (2) 
we restrict it to a toral set T+

⊂ H̃ in a super-semigroup over g. We then show that the 
restricted character χT+(t) coincides with the integral function I(t) of Eq. (1.1).

4.1  Background on Lie supergroups and their representations

Given a (finite-dimensional) complex Lie superalgebra g, an associated complex Lie 
supergroup is a ringed space (G,F) where G is a complex Lie group associated to g0 
which in addition integrates the representation of g0 on g1. The group operations on 
G lift to sheaf morphisms that satisfy the natural conditions imposed by associativity, 
inverse, and fixing the identity. Uniqueness theorems allow us to choose F  as the sheaf 
of germs of holomorphic functions with values in the Grassmann algebra � := ∧g∗1. 
Here we follow Berezin’s construction of the group structure, in particular his construc-
tion of the derivations associated to g which are defined by left and right ‘multiplication’.

The first step of this construction is to consider the complex Lie algebra

with Lie bracket

where �0 is the subspace of even elements in � including the degree-zero elements 
∧
0g∗1 = C, and �1 is the subspace of odd elements. Letting �′

0 denote the subspace of 
�0 without the complex line ∧0g∗1, we observe that n := �′

0 ⊗ g0 +�1 ⊗ g1 is an ideal in 
g̃ consisting of nilpotent elements. It can therefore be integrated to a simply connected 
nilpotent complex Lie group. This leads to the semidirect-product complex Lie group 
G̃ = GN  which is associated to g̃.

Grassmann analytic continuation (GAC) is a process that extends functions in the 
structure sheaf F  of G to holomorphic functions with values in � on the complex Lie 
group G̃ ([1],  p. 250–257; see also [12], Sect. §1). The Lie supergroup structure mor-
phisms of F  are defined by the standard complex Lie group structure of G̃. Indeed, the 
left and right representations of g as derivations on F  are defined via the standard invar-
iant vector fields defined by g̃ on G̃; and representations of the Lie supergroup (G,F) are 
defined by representations (with coefficients in �) of the complex Lie group G̃. We will 
sketch some aspects of this below, referring to [1] and [12] for details.

g̃ = �0 ⊗ g0 +�1 ⊗ g1 ,

[α ⊗ X ,β ⊗ Y ] := βα ⊗ [X ,Y ] ,
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Our goal here is to introduce the spinor–oscillator representation and define its char-
acter. While this is a super-semigroup representation on an infinite-dimensional space, 
we begin by recalling the basics of Lie supergroup representations on finite-dimensional 
spaces. In abstract terms, a representation of a Lie supergroup (G,FG) is a morphism 
(ρ, ρ∗) of Lie supergroups to (GL(V ),FGL(V )), where V = V0 ⊕ V1 is some graded vector 
space. Here we are interested in holomorphic representations, so that GL(V ) is the com-
plex Lie group GL(V0)×GL(V1) and FGL(V ) is its standard matrix structure sheaf with 
values in the Grassmann algebra �. The map ρ : G → GL(V0)×GL(V1) is a holomor-
phic homomorphism of complex Lie groups.

Let us assume that we are given a representation ρ∗ : g → gl(V ), which we extend 
to ρ∗ : g̃ → �0 ⊗ gl(V )0 +�1 ⊗ gl(V )1 by ρ∗(α ⊗ X) = α ⊗ ρ∗(X). With ρ as above we 
then explicitly construct the morphism ρ∗, and hence the character ρ∗(STr), as follows. 
First, writing elements g̃ ∈ G̃ as g̃ = g exp(�) with g ∈ G and � ∈ n, we consider the Lie 
group representation ρ̃ : G̃ → �⊗ End(V ) given by ge� �→ ρ(g)eρ∗(ξ). By the Z2-grad-
ing V = V0 ⊗ V1 the image matrices are of the form 

(
A B
C D

)
, where the coefficients in 

A and D are elements of �0 and those in B and C are elements of �1.Now if f is a super-
function in FGL(V ) with Grassmann analytic continuation f̃ , then f̃ ◦ ρ̃ is a �-valued 
holomorphic function on G̃ which is the GAC of a function ρ∗(f ) in FG. To determine 
the latter, one restricts f̃ ◦ ρ̃ to a characteristic subset Ŵ(ξ1, . . . , ξm) which is defined by 
a basis {ξ1, . . . , ξm} of g∗1. If {F1, . . . , Fm} denotes the dual basis, Ŵ(ξ1, . . . , ξm) is the image 
of the map G → G̃ given by g �→ g e

∑
ξj Fj, so that ρ∗(f ) := f̃ (ρ(g) e

∑
ξj ρ∗(Fj)). The char-

acter of the representation (ρ, ρ∗) then is the superfunction in FG which is defined in the 
expected way: χ(g) := STr (ρ(g) e

∑
ξj ρ∗(Fj)).

4.2  Character of the spinor–oscillator representation

In Sect. 3 we constructed a semigroup representation R ≡ R0 : H̃(Ws
0) → End(AV0) 

and also a group representation R′
: Mp → U(AV0), which exponentiate the oscillator 

representation sp(W0) → End(AV0). These are compatible in that Mp acts on H̃(Ws
0) by 

translation on the left and right, and R0(g1x g2) = R′(g1)R0(x)R
′(g2) for all g1, g2 ∈ Mp 

and x ∈ H̃(Ws
0).

In the same vein, the complex spinor representation o(W1) → gl(∧V ∗
1 ) exponentiates 

to a holomorphic Lie group representation R1 : Spin(W1) → GL(∧V ∗
1 ). Consider now 

the tensor product AV := ∧V ∗
1 ⊗AV0. By trivial extension, our representations R0,R1 

give rise to representations R0 : H̃(Ws
0) → End(AV ) and R1 : Spin(W1) → GL(AV ). 

Note that R1 and R0 commute, as they act on different factors of the tensor product AV . 
Note also that the group Z2 acts on H̃(Ws

0) and Spin(W1) by deck transformations of the 
2 : 1 coverings H̃(Ws

0) → H(Ws
0) and Spin(W1) → SO(W1). The non-trivial element of 

Z2 is represented by a sign change, R0 → −R0 and R1 → −R1.
In the sequel, let H̃ denote the semigroup

Given the representations R1 and R0, we form the semigroup representation

H̃ := Spin(W1)×Z2 H̃(Ws
0).

R : H̃ → End(AV ) , [g1; g0] ≡ [−g1;−g0] �→ R1(g1)R0(g0).
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From Sect. 2.6 and our labors in Sect. 3 we know that the semigroup representation R 
does the job of partially integrating the spinor–oscillator representation q : g → gl(AV ) 
of g = osp(W ) ⊂ q(W ). Thus, in summary, what we have is a representation (R,R∗ ≡ q) 
on AV  of the complex Lie super-semigroup (H̃ ,F) with complex Lie superalgebra g.

We now proceed according to the blueprint of the finite-dimensional setting in Sect. 
4.1. Since the semigroup structure of H̃ comes from the semigroup structure of the com-
plex domain H(Ws

0) in Sp(W0), the mapping R : H̃ → End(AV ) is a semigroup mor-
phism which is holomorphic in the appropriate infinite-dimensional sense. In order to 
regard this as a morphism of super-semigroups, we extend it as in the finite-dimensional 
setting to a semigroup representation R̃ with values in �⊗ End(AV ). Just as in the finite-
dimensional case, the morphism R∗ is defined by pulling back superfunctions defined 
on the image space of endomorphisms. By an immediate extension of Proposition 3.24, 
our semigroup representation is such that for x ∈ H̃ the operators R(x) multiplied by 
any polynomial in the osp-generators are trace class. Thus R∗(STr) is well-defined and, 
restricting to the characteristic set as above, we define the character of the spinor–oscil-
lator super-semigroup representation by

which is a holomorphic function on H̃ with values in ∧g∗1 = ∧osp∗1.

4.3  Identification of the restricted character with I(t)

Here we show that restriction of χ to a certain toral set in H̃ yields the integrand Z(t, k) 
of the autocorrelation function I(t) described in Sect. 1. In other words, we show that 
Z(t, k) can be expressed as the supertrace of an operator on the spinor–oscillator module 
AV . Then, by taking the Haar average over the compact group K, we identify I(t) with the 
supertrace of an operator on the submodule A K

V  of K-invariants.
We begin with a summary of the relevant facts. From Proposition 3.15 we recall the 

basic conjugation rule for the oscillator representation:

where x ∈ H̃(Ws
0), w ∈ W0, and τH (x) ∈ H(Ws

0) ⊂ Sp(W0). On the side of the spinor 
representation, the corresponding conjugation formula is

This defines the 2:1 covering homomorphism Spin(W1) → SO(W1), y �→ τS(y), which 
exponentiates the isomorphism of Lie algebras τ : s ∩ c2(W1) → o(W1).

In Sect. 3 we have discussed the oscillator character φ in great detail. In particular, we 
know that

An analogous result is known for the case of the spinor representation; see, e.g., the text-
book [2]. Defining the spinor character as the supertrace with respect to the canonical 
Z2-grading of the spinor module, one has

χ(x) := STrAV R(x) e
∑

ξj q(Fj),

R0(x) q(w) = q(τH (x)w)R0(x),

R1(y) q(w) = q(τS(y)w)R1(y), w ∈ W1 , y ∈ Spin(W1).

TrR0(x) = φ(x), φ(x)2 = Det−1(IdW0 − τH (x)).

STr R1(y) = ψ(y), ψ(y)2 = Det(IdW1 − τS(y)).
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Thus the spinor character, just like the oscillator character, is a square root. By taking the 
supertrace over the total Fock representation space, we obtain the formula

For W0 = W1, the case of our interest, Spin(W1) intersects with H̃(Ws
0) and the square 

root ψ(y) is defined in such a way that ψ(y) = φ(x)−1 for x = y ∈ Spin(W1) ∩ H̃(Ws
0).

Now let U = U0 ⊕U1 be a Z2-graded vector space, and let V = U ⊗ CN . The Lie 
group GL(V1)×GL(V0) acts on W = (V1 ⊕ V ∗

1 )⊕ (V0 ⊕ V ∗
0 ) by

This action serves to realize the group G := (GL(U1)×GL(U0))×C× GL(CN ) as a sub-
group of GL(V1)×GL(V0) ⊂ SO(W1)× Sp(W0). For the purpose of letting G act on 
AV  , let this representation be lifted to that of a double covering G̃ of G by

Our next statement gives the value of the spinor–oscillator character on (t1, t0; g) ∈ G̃ 
where g ∈ GL(CN ) and ts = diag(ts,1, . . . , ts, n) are diagonal matrices in GL(Us) (for 
s = 0, 1) or rather, in the pertinent double covering. Note that since the action of G̃ on 
the spinor–oscillator module a(V ) is degree-preserving, there is no longer any need to 
work with the completion AV  to a Hilbert space.

Lemma 4.1 If dimU0 = dimU1 = n and |t0,j| > 1 for all j = 1, . . . , n, then

Proof Since t1 and t0 are assumed to be of diagonal form, the statement holds true for a 
general value of n if it does so for the special case of n = 1. Hence let n = 1.

In that case t1 and t0 are single numbers and tsg acts on Ws = Vs ⊕ V ∗
s ≃ CN

⊕ (CN )∗ 
as (tsg).(v ⊕ ϕ) = (tsgv)⊕ ϕ ◦ (tsg)

−1 for s = 0, 1. From equation (4.1) we then have

which turns into the stated formula on pulling out a factor of Det(−t1g)/Det(−t0g) from 
under the square root. (Of course, the double covering of GL(U1)×GL(U0) is to be used 
in order to define this square root globally.)  �

In the formula of Lemma 4.1 we now set t1,j = eiψj and t0,j = eφj. We then put 
g−1

≡ k ∈ K  and integrate against Haar measure dk of unit mass on K. This integral and 
the summation defining the supertrace can be interchanged, as STra(V )(R ◦ ι)(t1, t0; k

−1) 
is a finite sum of power series and the conditions Reφj > 0 ensure uniform and absolute 

(4.1)STrAV R1(y)R0(x) = φ(x)ψ(y) =:

√
Det(IdW1 − τS(y))

Det(IdW0 − τH (x))
.

(g1, g0).(v1 ⊕ ϕ1 ⊕ v0 ⊕ ϕ0) = (g1v1)⊕ (ϕ1 ◦ g
−1
1 )⊕ (g0v0)⊕ (ϕ0 ◦ g

−1
0 ).

ι : G̃ →֒ H̃ = Spin(W1)×Z2 H̃(Ws
0).

STra(V )(R ◦ ι)(t1, t0; g) =

n∏

j=1

√
t1,j

t0,j

N
Det(IdN − (t1,j g)

−1)

Det(IdN − (t0,j g)−1)
.

STra(V )(R ◦ ι)(t1, t0; g) =

√
Det(IdN − t1g)Det(IdN − (t1g)−1)

Det(IdN − t0g)Det(IdN − (t0g)−1)
,
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convergence. Averaging over K with respect to Haar measure has the effect of projecting 
from a(V ) to the K-trivial isotypic component a(V )K , thus we arrive at

In the case of an even dimension N, the domain of definition of this formula is a complex 
torus T+

:= T1 × T+

0  where T1 = (C×)n and T+

0 ⊂ (C×)n is the open subset determined 
by the conditions |t0,j| = eReφj > 1 for all j. For odd N we must continue to work with a 
double cover (also denoted by T+) to take the square root e(N/2)

∑
j(iψj−φj).

Let now g be the Howe dual partner of Lie(K ) in osp(W ). We know from Proposition 
2.1 that g = osp(U ⊕U∗) for K = ON and g = osp(Ũ ⊕ Ũ∗) for K = USpN. Recall also 
from Sect. 2.6.1 that the g-representation on a(V )K  is irreducible and of highest weight 
�N = (N/2)

∑
j(iψj − φj). Denote by Ŵ� the set of weights of this representation. Let 

Bγ = (−1)|γ | dim a(V )K γ be the dimension of the weight space a(V )K γ multiplied with 
the correct sign to form the supertrace.

Corollary 4.1 On T+ we have

Remark 4.1 On the right-hand side we recognize the correlation function (see Sect. 
1) which is the object of our study and, as we have explained, is related to the charac-
ter of the irreducible g-representation on a(V )K . The left-hand side gives this charac-
ter (restricted to the toral set T+) in the form of a weight expansion, some information 
about which has already been provided by Corollary 2.3 of Sect. 2.6.1.

5  Proof of the character formula
Here we complete our task of deriving the formula (1.3),

Let us sketch this derivation, thereby giving an outline of this chapter.
Throughout we will be concerned with the irreducible g-representation on the sub-

space A K
V  of K-invariants in Fock space, where g ⊂ osp(V ⊕ V ∗) denotes the Howe 

partner defined by the K-action on V ⊕ V ∗, V = U ⊗ CN . Here our dealings with the 
‘big’ Lie superalgebra osp(V ⊕ V ∗) in Sect. 4.2 are repeated at the level of the ‘small’ Lie 
superalgebra g. In particular, we associate with g a complex super-semigroup (H̃ ′,F) 
which serves to partially integrate the g-representation on A K

V .
We then focus our attention on the spinor–oscillator character χ pulled back to H̃ ′

× K  
and Haar averaged over K. Let χ ′ be the resulting superfunction on H̃ ′. Its restriction 

(4.2)STra(V )K (R ◦ ι)(t1, t0; Id) = e
(N/2)

∑
j(iψj−φj)

∫

K

n∏

j=1

Det(IdN − e−iψj k)

Det(IdN − e−φj k)
dk .

∑

γ∈Ŵ�

Bγ eγ = e�N
∫

K

n∏

j=1

Det(IdN − e−iψj k)

Det(IdN − e−φj k)
dk .

(5.1)I(t) =
∑

[w]∈W/W�

ew(�N )

∏
β∈�+

�,1
(1− e−w(β))

∏
α∈�+

�,0
(1− e−w(α))

(ln t).
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χ ′

T+ to a toral set T+
⊂ H̃ ′ is the numerical function that we were led to consider in Sect. 

4.3; by Eq. (4.2) it is the function I(t) which is to be computed.
To prove the formula (5.1) for the character I(t), we study the full superfunction 

χ ′
: H̃ ′

→ ∧g∗1. General methods show that χ ′ has two distinctive properties: (i) it is 
radial with respect to the vector fields given by g, and (ii) it is an eigenfunction for every 
Laplace-Casimir operator, i.e., every differential operator D(I) associated to a Casimir 
invariant I, on (H̃ ′,F). Hence we look closely at the differential equations D(I)χ ′

= �χ ′ . 
For Iℓ =

∑(
φ2ℓ
j − (−1)ℓψ2ℓ

j

)
, ℓ ∈ N, regarded as an element of the center of the uni-

versal enveloping algebra of g, we show that D(Iℓ)χ ′
= 0. It follows that the radial part 

of D(Iℓ), which is the differential operator corresponding to D(Iℓ) on T+, annihilates the 
restricted character I(t) = χ ′

T+(t).
Hence we come to the final steps of our proof of the formula for I(t), the first of which 

is to derive explicit formulas for the radial parts of the Laplace-Casimir operators D(Iℓ) . 
For this we implement a good portion of Berezin’s theory of radial operators, which has 
been adapted to the context of the present paper in [12]. Using this theory, we show that 
the character χ ′

T+ is annihilated by an infinite set of differential operators Dℓ ◦ J  (ℓ ∈ N ), 
where

and J is the square root of a certain Jacobian. These differential equations alone are not 
enough to pin down a Weyl-group invariant holomorphic function on T+. However, we 
are able to derive additional information about the region of the non-zero weights of the 
Fourier development of χ ′

T+, and we then show that the function on the right-hand side 
of (5.1) is up to normalization the unique Weyl-group invariant holomorphic function 
on T+ which satisfies these additional conditions and is annihilated by the Dℓ ◦ J .

5.1  Properties of the character χ ′

Here we will be working with the following data:

  • a complex Lie superalgebra g = osp(U ⊕U∗) or osp(Ũ ⊕ Ũ∗);
  • a complex Lie super-semigroup (H̃ ′,F) over g;
  • the character χ ′ of a representation (ρ, ρ∗) of (H̃ ′,F , g) on A K

V .

  • To begin, we fill in some details omitted from the introductory part of this chapter.

First of all, to construct H̃ ′ we take G ⊂ SO(W1)× Sp(W0) to be the complex Lie 
group associated to the even part g0 ⊂ g and let H ′

⊂ G be the semigroup which is 
defined by intersecting G with SO(W1)×H(Ws

0). We then define H̃ ′ to be the pre-image 
of H ′ in the 2:1 covering space H̃ = Spin(W1)×Z2 H̃(Ws

0) of SO(W1)×H(Ws
0).

Second, the semigroup representation ρ emerges in a natural way, as follows. As a Lie 
semigroup with Lie algebra g0 ⊕ k contained in osp(W ) (by the isomorphism � of Sect. 
2.3), the direct product H̃ ′

× K  is naturally embedded into H̃ :

(5.2)Dℓ =

n∑

j=1

∂2ℓ

∂φ2ℓ
j

− (−1)ℓ
n∑

j=1

∂2ℓ

∂ψ2ℓ
j

ι : H̃ ′
→ H̃ × K .
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The semigroup representation ρ : H̃ ′
→ End(A K

V ) is then defined by pulling back R to 
H̃ ′

× {Id} and projecting on A K
V :

Third, by the general principles explained earlier, the character χ ′ of the super-semi-
group representation (ρ, ρ∗) of (H̃ ′,F , g) on A K

V  is determined by

Here {Fj} is a basis of g1 as usual, {ξj} is the dual basis of g∗1, and the Lie superalgebra rep-
resentation ρ∗ : g → gl(a(V )K ) is obtained by pulling back the spinor–oscillator repre-
sentation by the canonical embedding (Sect. 2.3) of the Howe dual pair (g, k) into osp(W ) 
and projection to a(V )K .

In the current subsection we show that the character χ ′ is, as would be expected, a 
radial superfunction. We also show that it is an eigenfunction of every Laplace-Casimir 
operator D(I) and if dimU0 = dimU1 = Cn, i.e., if we are dealing with g = osp2n|2n, then 
the Laplace-Casimir operators annihilate χ ′.

To simplify our notation, we now drop the primes and write H̃ ,χ instead of H̃ ′,χ ′.

5.1.1  Radiality of χ

A holomorphic superfunction f on H̃ is radial if and only if for every X ∈ g the sum 
LX + RX of the derivations defined by the left and right representations of X annihilate 
it. For a homogeneous element X of g the action of these derivations on f is defined as 
follows (see [1], p. 258, and [12], Sect. 1). First, one considers the Grassmann analytic 
continuation (GAC) f̃  of f. If X is even, then one differentiates f̃  with respect to the local 
action of the 1-parameter group etX. If X is odd, then one chooses an arbitrary element 
α ∈ �1 and differentiates f̃  with respect to the local action of etY  where Y = αX. One 
shows in this latter case that the result is of the form αLX (f̃ ) where LX is an odd deriva-
tion which does not depend on α. Of course αLX could be identically zero; so it might 
be necessary to extend the Grassmann algebra in order to prevent this from happening 
unless LX vanishes identically. Thus in both the odd and even cases we have an operator 
LX on the sheaf of �-valued holomorphic functions on the complex Lie group G̃. One 
checks that these operators stabilize the subspace of functions on G̃ which arise through 
GAC from (G,FG) and that the resulting map g → Der(FG), X �→ LX is a Lie superalge-
bra morphism. Carrying this out in the analogous way by multiplying the 1-parameter 
groups e−tX and e−tY  on the right, one obtains the morphism defined by X �→ RX.

The key for showing that the operators LX + RX annihilate the character χ is the fact 
that the GAC χ̃ of χ is STr ρ̃, where ρ̃ is the associated complex Lie semigroup represen-
tation of H̃N . One defines this by ρ̃(x e�) := ρ(x) eρ∗(�), as before.

Proposition 5.1 The character χ is a radial holomorphic superfunction on H̃.

Proof Let X ∈ g1 and Y = αX be as above. By using the multiplicative semigroup prop-
erty, the fact that STr [ρ̃(g), ρ∗(Y )] = 0, and using the �-linearity of STr to factor out α, 

ρ(x) = (R ◦ ι)(x , Id)
∣∣
A

K
V

.

χ ′(x) = STr
A

K
V
ρ(x) e

∑
ξj ρ∗(Fj).
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we observe that α(LX + RX ) annihilates STr ρ̃. As we mentioned above, in order to con-
clude that LX + RX annihilates this, it may be necessary to extend the Grassmann coef-
ficients. For X ∈ g0 the argument is even simpler, as it isn’t necessary to multiply by α. �

5.1.2  The character χ is a Laplace‑Casimir eigenfunction

Let us emphasize that with or without α, after returning from GAC functions on H̃N  
to functions on H̃, the left derivation of χ by X ∈ g is given with respect to a basis by 
(LXχ)(x) = STr (ρ∗(X) ρ(x) e

∑
ξj ρ∗(Fj)). If I is any element of the universal enveloping 

algebra U(g) and D(I) is the differential operator associated to I by X �→ LX, then

If I is in the center of U(g), we refer to D(I) as a Laplace-Casimir operator.

Proposition 5.2 χ is an eigenfunction of every Laplace-Casimir operator D(I).

Proof Since I lies in the center of U(g), the operator ρ∗(I) commutes with all opera-
tors defined by U(g) on a(V )K . Now according to Proposition 2.2 the subalgebra 
g(−2)

⊕ g(0) ⊂ g of degree-non-increasing operators stabilizes the vacuum space 
�1�C ⊂ a(V )K . By the irreducibility of the g-representation on a(V )K  this subalgebra sta-
bilizes no other proper subspace of a(V )K . Therefore, the linear operator ρ∗(I) stabilizes 
〈1〉C with some eigenvalue �(I). Furthermore, 1 ∈ C ⊂ a(V )K  is a cyclic vector for the 
action of U(g) on a(V )K . Thus ρ∗(I) ≡ �(I) Ida(V )K and the desired result follows.  �

5.1.3  Vanishing of the D(Iℓ)‑eigenvalues

Recall now from Sect. 2.2.2 that for every ℓ ∈ N we have a Casimir element Iℓ ∈ U(osp) 
of degree 2ℓ. Recall also that under the assumption of equal dimensions V0 ≃ V1 we 
introduced ∂ , ∂̃ ∈ osp1, C = [∂ , ∂̃] ∈ osp0, and Fℓ ∈ U(osp) such that Iℓ = [∂ , Fℓ] and 
[∂ ,C] = 0. For the proof of Proposition 5.3 below, we will make use of these objects at 
the level of U0 ≃ U1.

Consider now any irreducible osp-representation on a Z2-graded vector space V with 
the property that the V-supertrace of e−tC (t > 0) exists. Let �(Iℓ) be the scalar value 
of the Casimir invariant Iℓ in the representation V. Then a short computation using 
Iℓ = [∂ , Fℓ] and [∂ ,C] = 0 shows that �(Iℓ) multiplied by STrV e−tC vanishes:

since the supertrace of any bracket is zero. Thus we are facing a dichotomy: either we 
have STrV e−tC

= 0, or else �(Iℓ) = 0 for all ℓ ∈ N. Now it turns out that our representa-
tion a(V )K  realizes the latter alternative, which leads to the following consequence.

Proposition 5.3 Let U = U0 ⊕U1 be a Z2-graded vector space with U0 ≃ U1 and χ 
be the character of the super-semigroup representation of H̃ which is the integrated form 
of the irreducible g-representation on a(V )K  for V = U ⊗ CN . Then D(Iℓ)χ = 0 for all 
ℓ ∈ N.

D(I)χ(x) = STr (ρ∗(I) ρ(x) e
∑

ξj ρ∗(Fj)) .

�(Iℓ) STrV e−tC
= STrV e−tC Iℓ = STrV e−tC

[∂ , Fℓ] = STrV [∂ , e−tCFℓ] = 0,
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Remark 5.1 The condition U0 ≃ U1 is needed in order for the formula Iℓ = [∂ , Fℓ] of 
Lemma 2.9 to be available.

Proof For any real parameter t > 0 the supertrace of the operator ρ(e−tC) on A K
V  cer-

tainly exists and is non-zero. In fact, using formula (4.2) one computes the value as

The dichotomy of �(Iℓ) STrA K
V
ρ(e−tC) = 0 therefore gives D(Iℓ)χ = �(Iℓ)χ = 0.  �

5.2  Derivation of the differential equations

Here we outline a foundational result which leads to a proof that the differential opera-
tors Dℓ ◦ J , where J is the square root of a certain (super-)Jacobian and ℓ ∈ N, annihilate 
I(t). Due primarily to Berezin [1], this result has been adapted to our context in [12].

5.2.1  Radial operators

At this stage, another object enters: a space T+ which plays the role of maximal complex 
torus in H̃. To introduce it, we recall from the beginning of Sect. 5.1 that we are given a 
complex semigroup H ′ inside the complex Lie group G with Lie algebra g0. In terms of 
this structure, the space T+ is defined as the pre-image in H̃ of the intersection of the 
standard Cartan torus T ⊂ G with H ′.

Let now B be a neighborhood (open in H̃) of a regular point x ∈ T+. Then if 
f : B → ∧g∗1 is any radial holomorphic (super-)function, we denote by

its restriction to a function (with numerical values) on the toral subset. The restriction 
map R so defined is known to be injective, irrespective of the choice of B [12]. As before, 
for I an element of the universal enveloping algebra U(g), we let D(I) denote the associ-
ated differential operator. If I lies in the center of U(g) then D(I) takes radial holomorphic 
functions to radial holomorphic functions. In this case, we may use the injectivity of the 
restriction map to define the radial part Ḋ(I) by

We now require an understanding of the correspondence I �→ Ḋ(I) between Casimir 
invariants and the radial parts of invariant differential operators. While this correspond-
ence can be described in fairly explicit terms and has been the subject of recent research 
by one of the authors [12], here we only summarize the final outcome needed for the 
present paper. For this one defines the meromorphic function

where �+
= �+

0 ∪�+

1  is a system of even and odd positive roots (see Sect. 2.6.2).

STr
A

K
V
ρ(e−tC) =

∫

K

Detn(IdN − e−tk)

Detn(IdN − e−tk)
dk = 1 �= 0.

Rf : T+
∩ B → ∧

0g∗1 = C

Ḋ(I) ◦R = R ◦ D(I).

J (t) =

∏
α∈�+

0
2 sinh α(ln t)

2
∏

β∈�+

1
2 sinh β(ln t)

2

,
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From Sect. 2.2.2 we again recall that for every ℓ ∈ N we have a Casimir element 
Iℓ ∈ U(osp) of degree 2ℓ. We also recall the expression (5.2) for the differential operators 
Dℓ in terms of the local coordinates φ1, . . . ,φn,ψ1, . . . ,ψn we have been using all along.

Theorem 5.1 Let the neighborhood B ⊂ H̃ of a regular point x ∈ T+ be such that all 
points of the intersection B ∩ T+ are regular. Then, defining the radial part Ḋ(Iℓ) of the 
Laplace-Casimir operator D(Iℓ) as above, one has

where Qℓ−1 is a polynomial combination with constant coefficients of the operators 
D1, . . . ,Dℓ−1 which is of total degree at most 2ℓ− 2.

Remark 5.2 While some choice of domain B is necessary to ensure that both J(t) and 
J (t)−1 exist for all t ∈ B ∩ T+, the expression for Ḋ(Iℓ) does not depend on B.

Remark 5.3 The statement of Theorem 5.1 is the local version of a result due to Berezin 
[1]. The proof is in [12].

5.2.2  The differential equations

In view of the formula for Ḋ(Iℓ), and knowing that D(Iℓ)χ = 0 for all ℓ, the following is a 
key technical step.

Lemma 5.1 For all ℓ ∈ N we have Dℓ J = 0.

Proof One has the relation sinh x+y
2 sinh

x−y
2 =

1
2 (cosh x − cosh y). Hence,

with R =
∏n

j=1 2 sinh φj or R =
∏n

j=1 2i sinψj depending on whether g = osp(U ⊕U∗) 
or g = osp(Ũ ⊕ Ũ∗). By the Cauchy determinant formula

we obtain, up to a constant factor,

Consider the case of g = osp(U ⊕U∗). Expanding the determinant J as a sum over per-
mutations and applying the differential operator Dℓ to the summands, we then obtain 
Dℓ J ∝

Ḋ(Iℓ) = J−1(Dℓ + Qℓ−1) ◦ J ,

J =

∏
j<k 4 (cosh φj − cosh φk)(cosψj − cosψk)∏

j, k 2 (cosh φj − cosψk)
R

Det

(
1

xj − yk

)

j, k=1,..., n

=

∏
j<k(xj − xk)(yk − yj)∏n

j, k=1(xj − yk)
,

J ∝ Det

(
sinh φj

cosh φj − cosψk

)
, or J ∝ Det

(
i sinψj

cosh φj − cosψk

)
.
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Now

and the statement for g = osp(U ⊕U∗) is a consequence of the equation

which results from (cosh φ − cosψ)−12 sinh φ = coth(φ+iψ
2 )+ coth(φ−iψ

2 ) and the fact 
that every (anti-)holomorphic function on a domain in C is harmonic.

The reasoning for the case of g = osp(Ũ ⊕ Ũ∗) is no different.  �

Corollary 5.1 The restriction χT+ of the character χ from H̃ to T+ satisfies the system of 
differential equations Dℓ J χT+ = 0 for all ℓ ∈ N.

Proof Since D(Iℓ)χ = 0 and hence by restriction Ḋ(Iℓ)χT+ = 0, it follows from 
Theorem  5.1 that J−1(Dℓ + Qℓ−1)JχT+ = 0 for every ℓ ∈ N. Now by apply-
ing the operator Ḋ(Iℓ) to the constant function 1 and using Lemma 5.1, we obtain 
0 = J Ḋ(Iℓ)1 = Dℓ J + Qℓ−1 J = cℓ−1 J , where cℓ−1 is the constant term of the differential 
operator Qℓ−1, and from this we conclude that cℓ−1 = 0 for all ℓ ∈ N. It then follows by 
induction on ℓ that Dℓ J χ = 0 for all ℓ ∈ N.  �

The methods of this section can also be used to derive differential equations for the 
characters of a certain class of irreducible representations of gl(U) ≃ g(0). Define

Here, {i(ψj − ψk),φj − φk | j < k} and {φj − iψk} are the sets of even and odd positive 
roots of g(0). The following statement is Corollary 4.12 of [7] adapted to the present con-
text and notation. The idea of the proof is the same as that of Proposition 5.3 in conjunc-
tion with Corollary 5.1.

Corollary 5.2 Let γ be the (restricted) character of an irreducible representation of the 
Lie supergroup (gl(U), GL(U0)×GL(U1)) on a finite-dimensional Z2-graded vector space 
V = V0 ⊕ V1. If U0 ≃ U1 but dim(V0) �= dim(V1), then DℓJ0 γ = 0 for all ℓ ∈ N.

Dℓ

∑

σ∈Sn

(−1)|σ |
n∏

j=1

sinh φj

cosh φj − cosψσ(j)
=

∑

σ

(−1)|σ |Dℓ

n∏

j=1

sinh φj

cosh φj − cosψσ(j)
=

∑

σ

(−1)|σ |
n∑

k=1

∏

j �=k

sinh φj

cosh φj − cosψσ(j)

(
∂2ℓ

∂φ2ℓ
k

− (−1)ℓ
∂2ℓ

∂ψ2ℓ
σ(k)

)
sinh φk

cosh φk − cosψσ(k)
.

dℓ ≡
∂2ℓ

∂φ2ℓ
− (−1)ℓ

∂2ℓ

∂ψ2ℓ
= d1

ℓ−1∑

j=0

(−1)j
∂2ℓ−2

∂φ2ℓ−2−2j∂ψ2j
,

(
∂2

∂φ2
+

∂2

∂ψ2

)
sinh φ

cosh φ − cosψ
= 0,

J0 =

∏
j<k 4 sinh

i(ψj−ψk )

2 sinh
φj−φk

2∏
j, k 2 sinh

φj−iψk

2

.
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5.3  Global GR‑invariance and the Weyl group

Recall that χ is only invariant by the local action of the supergroup (G, g) on H̃. However, 
there exists a real form GR which acts globally on H̃ by conjugation and therefore χ is 
invariant by this action.

In order to identify these real symmetry groups GR in the two cases at hand, we first 
observe that the good real group acting in the spinor–oscillator representation AV  is

which contains K = ON and K = USpN as subgroups. Since we are studying the char-
acter χ of the g-representation on the subspace A K

V  of K-invariants, we now seek the 
subgroup GR ⊂ G′ which centralizes K; this means that we are asking the exponenti-
ated version of a question which was answered at the Lie algebra level in Sect. 2.7. Here, 
restricting the group G′ to the centralizer of K we find

We observe that GR for the case of K = ON is just the lower-dimensional copy of G′ 
which corresponds to Us taking the role of Vs. We also see immediately that the Lie alge-
bras Lie(GR) coincide with the real forms described in Propositions 2.4 and 2.5.

Since χ is invariant under the GR-action by conjugation, its restriction to a real toral 
semigroup in T+ is invariant under the action of the Weyl group W defined by GR. Since 
χ is holomorphic, its restriction to the complexification T+ is likewise W-invariant. Now 
GR decomposes as a direct product of two factors and so W also decomposes in this 
way. For both cases (K = ON, USpN) the second factor of the Weyl group W is just the 
permutation group Sn. As a matter of fact, conjugation of a diagonal element t0 ∈ MSp 
or t0 ∈ MSO by g ∈ Mp((U0 ⊕ U∗

0 )R) or g ∈ SO∗(U0 ⊕U∗
0 ) can return another diago-

nal element only by permutation of the eigenvalues eφ1 , . . . , eφn of t0. (No inversion 
eφj → e−φj is possible, as this would mean transgressing the oscillator semigroup.) This 
factor Sn of W will play no important role in the following, as the expressions we will 
encounter are automatically invariant under such permutations.

The first factors of W are of greater significance. For the two cases of K = ON and 
K = USpN these are the Weyl groups WSO2n and WSp2n respectively. An explicit descrip-
tion of these groups is as follows. Let {e1, . . . , en} be an orthonormal basis of U and 
decompose U ⊕U∗ into a direct sum of 2-planes,

where Pj is spanned by the vector ej and the linear form cej = �ej , ·� ( j = 1, . . . , n). In 
both cases at hand, i.e., for the symmetric form S as well the alternating form A, this is 
an orthogonal decomposition. The real torus under consideration is parameterized by 
(eiψ1 , . . . , eiψn) ∈ (U1)

n acting by eiψj .(ej) = eiψj ej and eiψj .(cej) = e−iψj cej.
The Weyl group WSp is generated by the permutations of these planes and the invo-

lutions which are defined by conjugation by the mapping that sends ej �→ cej and 
cej �→ −ej . The Weyl group WSO is generated by the permutations together with the 
involutions which are induced by the mappings that simply exchange ej with cej. Since we 

Spin(W1,R)×Z2 Mp(W0,R) =: G′,

GR =

{
Spin((U1 ⊕U∗

1 )R)×Z2 Mp((U0 ⊕U∗
0 )R) K = ON ,

USp(U1 ⊕U∗
1 )× SO∗(U0 ⊕U∗

0 ) K = USpN .

U ⊕U∗
= P1 ⊕ . . .⊕ Pn,
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are in the special orthogonal group and the determinant for a single exchange ej ↔ cej is 
−1, the number of involutions in any word in WSO has to be even.

In summary, the W-action on our standard bases of linear functions, {iψj} and {φj}, is 
given by the respective permutations together with the action of the involutions defined 
by sign change, iψj �→ −iψj. In the sequel, the Weyl group action will be understood to 
be either this standard action or alternatively, depending on the context, the correspond-
ing action on the exponentiated functions {eiψj } and {eφj }. As a final remark, let us note 
that the Weyl-group symmetries of the function χT+ can also be read off directly from 
the explicit expression (4.2). In particular, the absence of reflections φj → −φj is clear 
from the conditions Reφj > 0.

5.4  Formula for χT+

Recall that the main goal of this paper is to compute the restriction χT+ to T+ of the 
character χ which is defined on H̃ and plays the role of a character of the H̃-representa-
tion on the space of invariants A K

V  in the spinor–oscillator module. Here H̃ is the 2 : 1 
cover of an open semigroup in the complex Lie group G of the Howe partner super-
group of K. From now on we will only deal with the restriction of this numerical part and 
therefore we simplify notation by denoting it by χT+ ≡ χ.

We have restricted ourselves to the cases where K is either ON or USpN . The represen-
tation on a(V )K  is defined at the infinitesimal level on the full complex Lie superalgebra 
g which is the Howe partner of K in the canonical realization of osp in the Clifford–Weyl 
algebra of V ⊕ V ∗. It has been shown that χ : T+

→ C satisfies the differential equa-
tions Dℓ J χ = 0. We now recall that the non-zero weights of the Fourier expansion of χ 
are constrained to a certain region and show that χ is the unique holomorphic function 
satisfying both the weight constraints and the differential equations.

5.4.1  Uniqueness

Recall that Ŵ� denotes the set of weights of the g-representation on a(V )K . From Corol-
lary 2.3 we know that the weights γ =

∑n
j=1(imjψj − njφj) ∈ Ŵ� satisfy the weight con-

straints −N
2 ≤ mj ≤

N
2 ≤ nj. The highest weight is � =

N
2

∑
(iψj − φj). By the definition 

of the torus T+ the weights γ ∈ Ŵ� are analytically integrable and we now view eγ as a 
function on T+.

Theorem  5.2 The character χ : T+
→ C is annihilated by all differential operators 

Dℓ ◦ J  for ℓ ∈ N, and it has a convergent expansion χ =
∑

Bγ eγ where the sum runs over 
weights γ =

∑n
j=1(imjψj − njφj) satisfying the constraints −N

2 ≤ mj ≤
N
2 ≤ nj. For the 

case of K = USpN it is the unique W-invariant function on T+ with these two proper-
ties and B� = 1. For K = ON it is the unique W-invariant function on T+ with these two 
properties and B� = 1, B�−iNψn

= 0.

Remark 5.4 To verify the property B�−iNψn
= 0 which holds for the case of K = ON , 

look at the right-hand side of the formula of Corollary 4.1: in order to generate a term 
eγ = e�−iNψn in the weight expansion, you must pick the term e−iNψn in the expansion of 
the determinant for j = n in the numerator; but the latter term depends on k as Det(−k) 
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which vanishes upon taking the Haar average for K = ON. By W-invariance the property 
B�−iNψn

= 0 is equivalent to B�−iNψj
= 0 for all j.

In view of this Remark and Corollaries 2.3 and 5.1, it is only the uniqueness statement 
of Theorem 5.2 that remains to be proved here. This requires a bit of preparation, in par-
ticular to appropriately formulate the condition Dℓ Jχ = 0. For that we develop Jχ in a 
series Jχ =

∑
τ aτ fτ where the fτ are Dℓ-eigenfunctions for every ℓ ∈ N.

The first step is to determine an appropriate expansion for J. Recall that

Given a factor in the denominator of this representation, we wish to factor out, e.g., e−
β
2 

to obtain a term (1− e−β)−1 which we will attempt to develop in a geometric series. In 
order for this to converge uniformly on compact subsets of T+ it is necessary and suffi-
cient for Reβ to be positive on t = Lie(T+). This of course depends on the root β. Fortu-
nately, the sets of odd positive roots for our two cases of K = ON and K = USpN are the 
same (see Sect. 2.6.2):

So indeed, if we factor out e−
β
2 from each term in the denominator and do the same in 

the numerator, we obtain the expression

and it is possible to expand each term of the denominator in a geometric series. Here

is half the graded sum of the positive roots.
Now let {σ1, . . . , σr} be a basis of simple positive roots (cf. Sect. 2.6.2) and expand the 

terms (1− e−β)−1 in geometric series to obtain

which converges uniformly on compact subsets of T+. In this expression b and σ denote 
the vectors b = (b1, . . . , br) and σ = (σ1, . . . , σr), respectively, and bσ :=

∑
biσi. Follow-

ing the usual multi-index notation, b ≥ 0 means bi ≥ 0 for all i. Note A0 = 1.
Now we know that the character has a convergent series representation

Thus we may write

J =

∏
α∈�+

0
(e

α
2 − e−

α
2 )

∏
β∈�+

1
(e

β
2 − e−

β
2 )

.

�+

1 = {φj ± iψk | j , k = 1, . . . , n} .

J = eδ

∏
α∈�+

0
(1− e−α)

∏
β∈�+

1
(1− e−β)

,

δ =
1

2

∑

α∈�+

0

α −
1

2

∑

β∈�+

1

β

J = eδ
∑

b≥0

Ab e
bσ ,

χ =

∑

γ∈Ŵ�

Bγ eγ .
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For convenience of the discussion we let γ̃ := γ + bσ and reorganize the sums as

where the inner sum is a finite sum which runs over all b ≥ 0 such that γ̃ − bσ ∈ Ŵ�.
We are now in a position to explain the recursion procedure which shows that χ is 

unique. Start by applying Dℓ to Jχ as represented in the expression (5.3). Since δ + γ̃ 
is of the form 

∑
(imkψk − nkφk), we immediately see that it is an eigenfunction with 

eigenvalue E(ℓ, γ̃ ) := (−1)ℓ
∑

(m2ℓ
k − n2ℓk ). The functions eδ+γ̃ in the sum are independ-

ent eigenfunctions. Hence it follows that

for all γ̃ fixed and then for all ℓ ∈ N.
From now on we consider the Eq. (5.4) only in those cases where γ̃ is itself a weight of 

our representation. (We have license to do so as only the uniqueness part of Theorem 5.2 
is at stake here). In this case we have the following key fact.

Lemma 5.2 If γ ∈ Ŵ� and the eigenvalue E(ℓ, γ ) vanishes for all ℓ ∈ N, then γ is the 
highest weight �.

Proof Our first job is to compute δ. For the list of even and odd positive roots we refer 
the reader to Sect. 2.6.2. Direct computation shows that if K = ON, then

The same computation for the case of K = USpN shows that

Now we write γ =
∑

k(imkψk − nkφk) with the weight constraints −N
2 ≤ mk ≤

N
2 ≤ nk. 

The assumption that E(ℓ, γ ) vanishes for all ℓ means that

in the case of K = ON. In the case of K = USpN it means that

Jχ =

∑

γ∈Ŵ�

Bγ

∑

b≥0

Ab e
δ+γ+bσ .

(5.3)Jχ =

∑

γ̃

(∑
Ab Bγ̃−bσ

)
eδ+γ̃ ,

(5.4)0 = E(ℓ, γ̃ )
∑

Ab Bγ̃−bσ

δ =

n∑

k=1

(k − 1)(iψn−k+1 − φk) .

δ =

n∑

k=1

k (iψk − φn−k+1).

∑

k

(mn−k+1 + k − 1)2ℓ =
∑

k

(nk + k − 1)2ℓ for all ℓ

∑

k

(mn−k+1 + k)2ℓ =
∑

k

(nk + k)2ℓ for all ℓ.
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In the second case the only solution for mk and nk satisfying the weight constraints is 
the highest weight � itself. In the first case there is one other solution, namely that which 
is obtained from the highest weight by replacing mn =

N
2  by mn = −

N
2 . However, one 

directly checks that in the ON case, where 2iψn is not a root, it is not possible to obtain 
such a γ by adding some combination of roots from g(2) to �.  �

We are now able to give the proof of the uniqueness statement of Theorem 5.2.

Proof We will determine Bγ recursively, starting from B� = 1. Let γ �= � be a weight 
that satisfies the weight constraints. Then if K = USpN we know that E(ℓ, γ ) is non-zero 
for some ℓ. It therefore follows from Eq. (5.4) and A0 = 1 that

where the sum runs over all b �= 0 (recall that b ≥ 0 is always the case) such that 
γ − bσ ∈ Ŵ�. Since the weights γ − bσ involved in the sum are smaller than γ in the nat-
ural partial order defined by the basis of simple roots, Eq. (5.5) defines a recursion pro-
cedure for determining all coefficients Bγ.

In the case of K = ON we are confronted with the fact that the weight γ = �− iNψn 
satisfies the weight constraints and yet gives E(ℓ, γ ) = 0 for all ℓ. However, in this excep-
tional situation the conditions of Theorem  5.2 provide that B�−iNψn

= 0. Thus the 
expansion coefficients Bγ are still uniquely determined by our recursion procedure.  �

5.4.2  Explicit solution of the differential equations

As before let �+ be a set of positive roots of g = osp(U ⊕U∗) or osp(Ũ ⊕ Ũ∗). We now 
decompose these sets as

which means that �+
\�+

�
 is a set of positive roots of g(0). Let �+

�
 be further decomposed 

as �+

�
= �+

�,0 ∪�+

�,1 where �+

�,0 and �+

�,1 are the subsets of even and odd �-positive roots. 
Then the function J has a factorization as J = J0 Z

−1eδ
′ with

and δ′ = 1
2 (
∑

α −
∑

β) is half the graded sum of �-positive roots. For the case of 
K = ON one finds δ′ = −

1
2

∑
(iψj − φj) = −�N=1, while for K = USpN one has δ′ = �1.

The Weyl group W acts on T+ and therefore on functions on T+. Let W� ⊂ W  be the 
subgroup which stabilizes the highest weight � = �N and thus the corresponding func-
tion e� on T+. Note that W� is the direct product of the permutations of the set {eφj } 
and the permutations of the set {eiψj }. The symmetrizing operator SW  from W�-invariant 
analytic functions to W-invariant analytic functions on T+ is given by

(5.5)0 = Bγ +

∑
Ab Bγ−bσ ,

�+
= �+

�
∪ (�+

\�+

�
) , �+

�
:= {α ∈ �+

| gα ⊂ g(−2)
},

J0 =

∏
α∈�+

0 \�
+

�,0
2 sinh α

2
∏

β∈�+

1 \�
+

�,1
2 sinh β

2

, Z =

∏
β∈�+

�,1
(1− e−β)

∏
α∈�+

�,0
(1− e−α)

,

SW (f ) :=
∑

[w]∈W /W�

w(f ).
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Notice that the function e�Z is W�-invariant; the symmetrized function SW (e�Z) then 
is W-invariant. We now wish to show that this function coincides with our character 
χ. In this endeavor, an obstacle appears to be that e�χ by Corollary 4.1 is a polyno-
mial in the variables eiψ1 , . . . , eiψn, whereas the function Z has poles at ei(ψj+ψk ) = 1. 
Hence our next step is to show that these poles are actually canceled by the process of 
W-symmetrization.

Lemma 5.3 The function SW (e�Z) is holomorphic on ∩n
j=1{Reφj > 0}.

Proof An even root α ∈ �+

0  is some linear combination of either the functions φj or the 
functions ψj. Denoting the latter subset of even roots by �+

0 (ψ) ⊂ �+

0 , let �α ⊂ T  for 
α ∈ �+

0 (ψ) be the complex submanifold

By definition, the function SW (e�Z) is holomorphic on

Now it is a theorem of complex analysis that if a function is holomorphic outside an 
analytic set of complex codimension at least two, then this function is everywhere holo-
morphic. Therefore, since the intersection of two or more of the submanifolds �α is of 
codimension at least two in T+, it suffices to show that for any α ∈ �+

0 (ψ) our function 
SW (e�Z) extends holomorphically to

Hence let α be some fixed root in �+

0 (ψ). There exists a Weyl-group element w ∈ W  
and a w-invariant neighborhood U of Dα such that w : U → U  is a reflection fixing the 
points of Dα. Let zα : U → C be a complex coordinate which is transverse to Dα in the 
sense that w(zα) = −zα. Because the root α occurs at most once in the product Z, the 
function SW (e�Z) has at most a simple pole in zα. We may choose U in such a way that 
SW (e�Z) is holomorphic on U\Dα. Doing so we have a unique decomposition

where A and B are holomorphic on U. Since SW (e�Z) is W-invariant, we conclude that 
w(A) = −A and hence A = 0 along Dα.  �

Lemma 5.4 For all ℓ ,N ∈ N the function ϕ : T+
→ C defined by ϕ = SW (e�N Z) is a 

solution of the differential equation Dℓ Jϕ = 0.

Proof Using Z = eδ
′

J0/J  we write ϕ = SW (e�N+δ′ J0/J ). Then, lifting the sum over cosets 
[w] ∈ W /W� to a sum over Weyl-group elements w ∈ W  we obtain

�α := {t ∈ T+
| eα(t) = 1}.

(
∩
n
j=1 {Reφj > 0}

)
\

(
∪α∈�+

0 (ψ)�α

)
.

Dα := �α\

(
∪�+

0 (ψ)∋α′ �=α �α′

)
.

SW (e�Z) =
A

zα
+ B

ord(W�) Jϕ = J
∑

w∈W

w(e�N+δ′ J0/J ) =
∑

w∈W

sgn(w)w(J0 e
�N+δ′) ,
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where w �→ sgn(w) ∈ Z2 = {±1} is the determinant of w ∈ W ⊂ O(t) = O2n.
The factor e�N+δ′ is the character of the representation (N∓1

2 STr , SDet
N∓1
2 ) of (a dou-

ble cover of ) the Lie supergroup (g(0), GL(U0)×GL(U1)). This representation is one-
dimensional, and from Corollary 5.2 we have Dℓ(J0 e

�N+δ′) = 0 for all ℓ,N ∈ N.
The statement of the lemma now follows by applying the W-invariant differential oper-

ator Dℓ to the formula for ord(W�)Jϕ above.  �

5.4.3  Weight constraints

Here we carry out the final step in proving the explicit formula for the character χ of our 
representation. Since the formula in the case of K = SON follows directly from that for 
K = ON (see Sect. 1) and the case of K = UN has been handled in [7], we need only dis-
cuss the cases of K = ON and K = USpN.

In order to show that the character is indeed given by χ = ϕ with ϕ = SW (e�Z), it 
remains to prove that in the series development ϕ =

∑
Bγ eγ of the function defined by

the only non-zero coefficients Bγ are those where the linear functions γ are of the form 
γ =

∑
(imkψk − nkφk) with −N

2 ≤ mk ≤
N
2 ≤ nk. We also have to show that Bγ = 0 in 

the case of the exceptional weight γ = �− iNψn occurring for K = ON.
We have shown above that ϕ = SW (e�Z) is holomorphic on the product of the full 

complex torus of the variables eiψk with the domain defined by Reφk > 0. Although the 
individual terms ϕ[w] in the representation of ϕ have poles (which cancel in the Weyl-
group averaging process) we may still develop each term of ϕ in a series expansion; this 
will in fact yield the desired weight constraints.

We begin with the situation where K = ON. In this case �+

�,0 consists of the roots 
iψj + iψk ( j < k) and φj + φk ( j ≤ k), and �+

�,1 is the set of roots of the form iψj + φk 
( j, k = 1, . . . , n). Let us first consider the term of ϕ where [w] = W�. Its denominator can 
be developed in a geometric series on the region corresponding to Reφk > 0 for all k. 
There we may write this term as

Here and for the remainder of this paragraph α runs through the �-positive even roots 
and β through the �-positive odd roots.

Recall that �N =
N
2

∑
(iψk − φk), and note that all powers of eiψk and eφk occurring in 

the series expansion of

are non-positive. Thus, if γ =
∑

(imkψk − nkφk) is a weight which arises in ϕ[Id], then 
nk ≥

N
2  and mk ≤

N
2 . In the case of the mk this is a statement only about the term ϕ[Id],  

but, since the action of the Weyl group on the variables φk is just by permutation of 
the indices, it follows that nk ≥

N
2  holds always, independent of the term ϕ[w] under 

(5.6)ϕ =

∑

[w]∈W /W�

ϕ[w], ϕ[w] := ew(�N )

∏
β∈�+

�,1
(1− e−w(β))

∏
α∈�+

�,0
(1− e−w(α))

,

ϕ[Id] = e�N
∏

β

(1− e−β)
∏

α

∑

n≥0

e−nα .

∏

β

(1− e−β)
∏

α

∑

n≥0

e−nα
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consideration. Hence, we ignore the φk in our further discussion and only analyze the 
powers of the exponentials eiψk which arise in the other terms ϕ[w].

Given a fixed index k ∈ {1, . . . , n} we will develop every term ϕ[w] on a region R = R(k) 
defined by certain inequalities which in the case of k = 1 are

We now discuss this case in detail.
Recall that iψ1 occurs in the denominator in factors of the form

for j > 1. If w(iψ1) = iψ1, then we expand these factors just as in the case of ϕ[Id]. Con-
vergence of the resulting series is guaranteed no matter what w does to ψj.

In the situation where w(iψ1) = −iψ1 we rewrite the factors in the denominator as 
(1− e−w(α))−1

= −ew(α)(1− ew(α))−1 and expand, and convergence in R is again guar-
anteed. Adding these series we obtain a series representation

which is convergent on R.

Lemma 5.5 If γ =
∑

(imkψk − nkφk) and Bγ �= 0, then m1 ≤
N
2 .

Proof If w(iψ1) = iψ1, then by the same argument as in the case of [w] = [Id] we see 
that eiψ1 occurs in the series development of ϕ[w] with a power m1 of at most N2 .

Now suppose that w(iψ1) = −iψ1. Then, following the prescription above we rewrite 
the ψ1-dependent factors in ϕ[w] as

and expand the r.h.s. in powers of e−iψ1. It follows that in this case m1 ≤ −
N
2 + 1, which 

for any positive integer N implies that m1 ≤
N
2 .  �

Using Weyl-group invariance, this estimate for m1 will now yield the desired result.

Lemma 5.6 Suppose that K = ON and let ϕ =
∑

Bγ eγ be the globally conver-
gent series expansion of the proposed character ϕ = SW (e�Z). Then for every weight 
γ =

∑
(imkψk − nkφk) with Bγ �= 0 it follows that −N

2 ≤ mk ≤
N
2 ≤ nk.

Proof The inequality nk ≥
N
2  was proved above as an immediate consequence of the 

fact that the Weyl group W effectively acts only on the ψj.

Above we showed that on the region R the proposed character ϕ has a series develop-
ment where in every γ the coefficient m1 of iψ1 is at most N2 . Recalling the fact that the 
function ϕ is holomorphic on T+, we infer that m1 ≤

N
2  also holds true for the globally 

convergent series development 
∑

Bγ eγ.

Re(iψ1) > · · · > Re(iψn) > 0.

(1− e−w(α))−1
= (1− e−w(iψ1)−w(iψj))−1

ϕ =

∑

[w]

ϕ[w] =
∑

γ

Bγ eγ ,

(5.7)e
N
2 w(iψ1)

∏
j≥1(1− e−w(iψ1+φj))

∏
j≥2(1− e−w(iψ1+iψj))

= e(−
N
2 +1)iψ1

∏
j≥1(e

−iψ1 − e−φj )
∏

j≥2(e
−iψ1 − e−w(iψj))

,
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To get the same statement for iψk with k �= 1 we just change the definition of R to R(k) 
defined by the inequalities Re(iψk) > Re(iψ1) > . . . > 0. Arguing for general k as we 
did for k = 1 in the above lemma, we show that the coefficient mk of iψk in every γ in 
the series expansion of every ϕ[w] on R(k) is at most N2 . By the holomorphic property, the 
same is true for the global series expansion of the proposed character ϕ.

Hence, to complete the proof we need only show the inequality mk ≥ −
N
2 . But for 

this it suffices to note that for every k there is an element w of the Weyl group with 
w(iψk) = −iψk. Indeed, using the Weyl invariance of ϕ, if there was some γ where 
mk < −

N
2 , then the coefficient of iψk in w(γ ) would be larger than N2 .  �

To complete our work, we must prove Lemma 5.6 for the case K = USpN. For this we 
use the same notation as above for the basic linear functions, namely iψk and φk. Here, 
compared to the ON case, there are only slight differences in the �-positive roots and 
the Weyl group. The only difference in the roots is in �+

�,0 where iψj + iψk occurs in the 
larger range j ≤ k and φj + φk in the smaller range j < k. The Weyl group acts by per-
mutation of indices on both the iψj and φj and by sign reversal on the iψj. In this case, as 
opposed to the case above where only an even number of sign reversals were allowed, 
every sign reversal transformation is in the Weyl group.

In order to prove Lemma 5.6 in this case, we need only go through the argument in the 
ON case and make minor adjustments. In fact, the main step is to prove Lemma 5.5 and, 
there, the only change is that the range of j for the factor 1− e−i(ψ1+ψj) is larger. This is 
only relevant in the case w(iψ1) = −iψ1, where we rewrite the additional denominator 
term (1− e−w(2iψ1))−1 as −e−2iψ1(1− e−2iψ1)−1. Hence the factor in front of the ratio 
of products on the r.h.s. of equation (5.7) gets an additional factor of e−2iψ1 and now is 
e−i(N2 +1)ψ1. Thus m1 ≤ −

N
2 − 1 which certainly implies m1 ≤

N
2 .

Let us summarize this discussion.

Theorem  5.3 For both K = ON and K = USpN every weight γ =
∑

(imkψk − nkφk) 
occurring in the series expansion SW (e�Z) =

∑
Bγ eγ obeys the weight constraints

Moreover, using the fact that the Weyl-group transformations for K = ON always 
involve an even number of sign changes, one sees that B�−iNψn

= 0 in that case. As a 
consequence of the uniqueness theorem (Theorem 5.2) we therefore have

in both the ON and USpN cases. Since the SON case has been handled as a consequence 
of the result for ON , our work is now complete.
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−
N

2
≤ mk ≤

N

2
≤ nk (k = 1, . . . , n) .

χ = SW (e�Z) =
∑

[w]∈W /W�

ew(�N )

∏
β∈�+

�,1
(1− e−w(β))

∏
α∈�+

�,0
(1− e−w(α))
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