12 research outputs found

    Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase

    Get PDF
    UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set

    Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification.

    Get PDF
    The study of protein phosphorylation is critical for the advancement of our understanding of cellular responses to external and internal stimuli. Phosphorylation, the addition of phosphate groups, most often occurs on serine, threonine, or tyrosine residues due to the action of protein kinases. This structural change causes the protein to become activated (or deactivated) and enables it in turn to initiate the phosphorylation of other proteins in a cascade, eventually causing cell-wide changes such as apoptosis, cell differentiation, and growth (among others). Cellular phosphoprotein pathway dysregulation by mutation or chromosomal instability can often give the cell a selective advantage and lead to cancer. Obviously the understanding of these systems is of huge importance to the field of oncology.This chapter aims to provide a "how to" manual for one such technology, the 96-well plate-based xMAP® platform from Luminex. The system utilizes antibody-bound free-floating magnetic spheres which can easily be removed from suspension via magnetization. There are 100 unique bead sets (moving up to 500 bead sets for the most recent system) identified by the ratio of two dyes coating the microsphere. Each bead set is conjugated to a specific antibody which allows targeted protein extraction from low-concentration lysate solution. Biotinylated secondary antibodies/streptavidin-R-phycoerythrin (SAPE) complexes provide the quantification mechanism for the phosphoprotein of interest

    From protein sequences to 3D-structures and beyond: the example of the UniProt Knowledgebase

    Get PDF
    With the dramatic increase in the volume of experimental results in every domain of life sciences, assembling pertinent data and combining information from different fields has become a challenge. Information is dispersed over numerous specialized databases and is presented in many different formats. Rapid access to experiment-based information about well-characterized proteins helps predict the function of uncharacterized proteins identified by large-scale sequencing. In this context, universal knowledgebases play essential roles in providing access to data from complementary types of experiments and serving as hubs with cross-references to many specialized databases. This review outlines how the value of experimental data is optimized by combining high-quality protein sequences with complementary experimental results, including information derived from protein 3D-structures, using as an example the UniProt knowledgebase (UniProtKB) and the tools and links provided on its website (http://www.uniprot.org/). It also evokes precautions that are necessary for successful predictions and extrapolations

    Differential effects of PKA-controlled CaMKK2 variants on neuronal differentiation

    No full text
    Regulation between protein kinases is critical for the establishment of signaling pathways/networks to orchestrate cellular processes. Besides posttranslational phosphorylation, alternative pre-mRNA splicing is another way to control kinase properties, but splicing regulation between two kinases and the effect of resulting variants on cells have not been explored. We examined the effect of the protein kinase A (PKA) pathway on the alternative splicing and variant properties of the Ca++/calmodulin-dependent protein kinase kinase 2 (CaMKK2) gene in B35 neuroblastoma cells. Inclusion of the exon 16 of CaMKK2 was significantly reduced by H89, a PKA selective inhibitor. Consistently, overexpressed PKA strongly promoted the exon inclusion in a CaMKK2 sequence-dependent way in splicing reporter assays. In vitro, purified CaMKK2 variant proteins were kinase-active. In cells, they were differentially phosphorylated by PKA. In RNA interference assays, CaMKK2 was required for forskolin-induced neurite growth. Interestingly, overexpression of the variant without exon 16 (−E16) promoted neurite elongation while the other one (+E16) promoted neurite branching; in contrast, reduction of the latter variant enhanced neurite elongation. Moreover, the variants are differentially expressed and the exon 16-containing transcripts highly enriched in the brain, particularly the cerebellum and hippocampus. Thus, PKA regulates the alternative splicing of CaMKK2 to produce variants that differentially modulate neuronal differentiation. Taken together with the many distinct variants of kinases, alternative splicing regulation likely adds another layer of modulation between protein kinases in cellular signaling networks

    Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis.

    No full text
    Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long a-alkyl-ß-hydroxylated fatty acids provide protection to the tubercule bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb in which two discrete fatty acid synthases systems (FAS-I and FAS-II) were discovered. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, HadAB/BC, InhA, MabA, FadD32 and PcA downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there has been some early drug discovery efforts towards developing potent and selective inhibitors as novel antitubercular agents. Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this minireview, including their known small molecule inhibitors
    corecore