148 research outputs found

    Technical considerations on using the large Nancay radio telescope for SETI

    Get PDF
    The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends

    CO (Carbon Monoxide Mixing Ratio System) Handbook

    Full text link
    The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005

    Portable Flux Tower Deployments Field Campaign Report

    Get PDF
    Contents Acronyms and Abbreviations...................................................................... iii 1.0 Summary ....................................................... 1 2.0 Results ........................................... 1 3.0 Publications and References ................................................. 2 4.0 Lessons Learned ....................................................................

    Image reconstruction in optical interferometry: Benchmarking the regularization

    Full text link
    With the advent of infrared long-baseline interferometers with more than two telescopes, both the size and the completeness of interferometric data sets have significantly increased, allowing images based on models with no a priori assumptions to be reconstructed. Our main objective is to analyze the multiple parameters of the image reconstruction process with particular attention to the regularization term and the study of their behavior in different situations. The secondary goal is to derive practical rules for the users. Using the Multi-aperture image Reconstruction Algorithm (MiRA), we performed multiple systematic tests, analyzing 11 regularization terms commonly used. The tests are made on different astrophysical objects, different (u,v) plane coverages and several signal-to-noise ratios to determine the minimal configuration needed to reconstruct an image. We establish a methodology and we introduce the mean-square errors (MSE) to discuss the results. From the ~24000 simulations performed for the benchmarking of image reconstruction with MiRA, we are able to classify the different regularizations in the context of the observations. We find typical values of the regularization weight. A minimal (u,v) coverage is required to reconstruct an acceptable image, whereas no limits are found for the studied values of the signal-to-noise ratio. We also show that super-resolution can be achieved with increasing performance with the (u,v) coverage filling. Using image reconstruction with a sufficient (u,v) coverage is shown to be reliable. The choice of the main parameters of the reconstruction is tightly constrained. We recommend that efforts to develop interferometric infrastructures should first concentrate on the number of telescopes to combine, and secondly on improving the accuracy and sensitivity of the arrays.Comment: 15 pages, 16 figures; accepted in A&

    Absence of "Ghost Images" Excludes Large Values of the Cosmological Constant

    Get PDF
    We used the 1.4 GHz NRAO NVSS survey to search for ghost images of radio sources, expected in cosmologies with a positive cosmological constant and positive space curvature. No statistically significant evidence for ghost images was found, placing constraints on the values of L, the space curvature or the duration of the radio-luminous phase of extragalactic radio sources.Comment: 11 pages 2 figure

    Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra

    Get PDF
    CO mixing ratios for the lowermost 2-km atmospheric layer were retrieved from downwelling infrared (IR) radiance spectra of the clear sky measured between 2002 and 2009 by a zenith-viewing Atmospheric Emitted Radiance Interferometer (AERI) deployed at the Southern Great Plains (SGP) observatory of the Atmospheric Radiation Measurements (ARM) Program near Lamont, Oklahoma. A version of a published earlier retrieval algorithm was improved and validated. Archived temperature and water vapor profiles retrieved from the same AERI spectra through automated ARM processing were used as input data for the CO retrievals. We found the archived water vapor profiles required additional constraint using SGP Microwave Radiometer retrievals of total precipitable water vapor. A correction for scattered solar light was developed as well. The retrieved CO was validated using simultaneous independently measured CO profiles from an aircraft. These tropospheric CO profiles were measured from the surface to altitudes of 4572 m a.s.l. once or twice a week between March 2006 and December 2008. The aircraft measurements were supplemented with ground-based CO measurements using a non-dispersive infrared gas correlation instrument at the SGP and retrievals from the Atmospheric IR Sounder (AIRS) above 5 km to create full tropospheric CO profiles. Comparison of the profiles convolved with averaging kernels to the AERI CO retrievals found a squared correlation coefficient of 0.57, a standard deviation of ±11.7 ppbv, a bias of -16 ppbv, and a slope of 0.92. Averaged seasonal and diurnal cycles measured by the AERI are compared with those measured continuously in situ at the SGP in the boundary layer. Monthly mean CO values measured by the AERI between 2002 and 2009 are compared with those measured by the AIRS over North America, the Northern Hemisphere mid-latitudes, and over the tropics

    A31N-03: Lower-Tropospheric CO2 from Near-Infrared ACOS-GOSAT Observations

    Get PDF
    We present two new products from near-infrared GOSAT observations: lower tropospheric (LMT, from 0-2.5 km) and upper tropospheric/stratospheric (U, above 2.5 km) carbon dioxide partial columns. We compare these new products to aircraft profiles and remote surface flask measurements and find that the seasonal and year-to-year variations in the new partial columns significantly improve over the ACOS-GOSAT initial guess/a priori, with distinct patterns in the LMT and U seasonal cycles which match validation data. For land monthly averages, we find errors of 1.9, 0.7, and 0.8 ppm for retrieved GOSAT LMT, U, and XCO2; for ocean monthly averages, we find errors of 0.7, 0.5, and 0.5 ppm for retrieved GOSAT LMT, U, and XCO2. In the southern hemisphere biomass burning season, the new partial columns show similar patterns to MODIS fire maps and MOPITT multispectral CO for both vertical levels, despite a flat ACOS-GOSAT prior, and CO/CO2 emission factor consistent with published values. The difference of LMT and U, useful for evaluation of model transport error, has also been validated with monthly average error of 0.8 (1.4) ppm for ocean (land). The new LMT partial column is more locally influenced than the U partial column, meaning that local fluxes can now be separated from CO2 transported from far away

    Profiling tropospheric CO_2 using Aura TES and TCCON instruments

    Get PDF
    Monitoring the global distribution and long-term variations of CO_2 sources and sinks is required for characterizing the global carbon budget. Total column measurements are useful for estimating regional-scale fluxes; however, model transport remains a significant error source, particularly for quantifying local sources and sinks. To improve the capability of estimating regional fluxes, we estimate lower tropospheric CO_2 concentrations from ground-based near-infrared (NIR) measurements with space-based thermal infrared (TIR) measurements. The NIR measurements are obtained from the Total Carbon Column Observing Network (TCCON) of solar measurements, which provide an estimate of the total CO_2 column amount. Estimates of tropospheric CO_2 that are co-located with TCCON are obtained by assimilating Tropospheric Emission Spectrometer (TES) free tropospheric CO_2 estimates into the GEOS-Chem model. We find that quantifying lower tropospheric CO_2 by subtracting free tropospheric CO_2 estimates from total column estimates is a linear problem, because the calculated random uncertainties in total column and lower tropospheric estimates are consistent with actual uncertainties as compared to aircraft data. For the total column estimates, the random uncertainty is about 0.55 ppm with a bias of −5.66 ppm, consistent with previously published results. After accounting for the total column bias, the bias in the lower tropospheric CO_2 estimates is 0.26 ppm with a precision (one standard deviation) of 1.02 ppm. This precision is sufficient for capturing the winter to summer variability of approximately 12 ppm in the lower troposphere; double the variability of the total column. This work shows that a combination of NIR and TIR measurements can profile CO_2 with the precision and accuracy needed to quantify lower tropospheric CO_2 variability

    Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters

    Get PDF
    Polyamidoximes (pAMD) are known to have strong affinities for uranyl cations. Grafting pAMD onto the surface of functionalized maghemite nanoparticles (MNP) leads to a nanomaterial with high capacities in the extraction of uranium from wastewaters by magnetic sedimentation. A diamidoxime (dAMD) specifically synthesized for this purpose showed a strong affinity for uranyl: Ka = 105 M-1 as determined by Isothermal Titration Calorimetry (nano-ITC). The dAMD was grafted onto the surface of MNP and the obtained sorbent (MNP-dAMD) was characterized. The nanohybrids were afterward incubated with different concentrations of uranyl and the solid phase recovered by magnetic separation. This latter was characterized by zeta-potential measurements, X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Fluorescence spectroscopy (XRF), whereas the supernatant was analyzed by Inductively Coupled Plasma coupled to Mass Spectrometry (ICP-MS). All the data fitted the models of Langmuir, Freundlich and Temkin isotherms very well. These isotherms allowed us to evaluate the efficiency of the adsorption of uranium by MNP-dAMD. The saturation sorption capacity (qmax) was determined. It indicates that MNP-dAMD is able to extract up to 120 mg of uranium per gram of sorbent. Spherical aberration (Cs)-corrected High-Resolution Scanning Transmission Electron Microscopy (HRSTEM) confirmed these results and clearly showed that uranium is confined at the surface of the sorbent. Thus, MNP-dAMD presents a strong potential for the extraction of uranium from wastewaters
    • …
    corecore