67 research outputs found

    Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process

    Get PDF
    In this study,damping ratios of 3 samples made of aluminum foam material, which have different-density pores, were calculated, the effects pore density on damping were examined. Experimental modal analysis method was used for examining of the effects of the pore density on damping. In experimental modal analysis method, frequency charts were obtained by driving to the sample with a hammer. Through these frequency charts, damping ratios of each 3 samples were calculated with ME’scope VES program. It was observed in calculated damping ratios that pore density has influences on damping; thus, damping accordingly increases as the number of pores increases. It is seen that critical damping constant decreases as the material structure changes in terms of volume and density

    Damping properties of open pore aluminum foams produced by vacuum casting and NaCl dissolution process

    Get PDF
    In this study,damping ratios of 3 samples made of aluminum foam material, which have different-density pores, were calculated, the effects pore density on damping were examined. Experimental modal analysis method was used for examining of the effects of the pore density on damping. In experimental modal analysis method, frequency charts were obtained by driving to the sample with a hammer. Through these frequency charts, damping ratios of each 3 samples were calculated with ME’scope VES program. It was observed in calculated damping ratios that pore density has influences on damping; thus, damping accordingly increases as the number of pores increases. It is seen that critical damping constant decreases as the material structure changes in terms of volume and density

    Demodex spp. prevalence among university students

    Get PDF

    Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index

    Get PDF
    Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated

    Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures

    Get PDF
    BACKGROUND: Protein-protein interactions (PPIs) mediate the vast majority of biological processes, therefore, significant efforts have been directed to investigate PPIs to fully comprehend cellular functions. Predicting complex structures is critical to reveal molecular mechanisms by which proteins operate. Despite recent advances in the development of new methods to model macromolecular assemblies, most current methodologies are designed to work with experimentally determined protein structures. However, because only computer-generated models are available for a large number of proteins in a given genome, computational tools should tolerate structural inaccuracies in order to perform the genome-wide modeling of PPIs. RESULTS: To address this problem, we developed eRank(PPI), an algorithm for the identification of near-native conformations generated by protein docking using experimental structures as well as protein models. The scoring function implemented in eRank(PPI) employs multiple features including interface probability estimates calculated by eFindSite(PPI) and a novel contact-based symmetry score. In comparative benchmarks using representative datasets of homo- and hetero-complexes, we show that eRank(PPI) consistently outperforms state-of-the-art algorithms improving the success rate by ~10 %. CONCLUSIONS: eRank(PPI) was designed to bridge the gap between the volume of sequence data, the evidence of binary interactions, and the atomic details of pharmacologically relevant protein complexes. Tolerating structure imperfections in computer-generated models opens up a possibility to conduct the exhaustive structure-based reconstruction of PPI networks across proteomes. The methods and datasets used in this study are available at www.brylinski.org/erankppi

    Impact of surgical treatment on respiratory muscle dysfunction in symptomatic hyperparathyroidism

    No full text
    Hypothesis: We hypothesized that surgical treatment would improve respiratory muscle strength in symptomatic hyperparathyroidism (HPT)
    corecore