129 research outputs found

    Critical nucleus charge in a superstrong magnetic field: effect of screening

    Full text link
    A superstrong magnetic field stimulates the spontaneous production of positrons by naked nuclei by diminishing the value of the critical charge Z_{cr} . The phenomenon of screening of the Coulomb potential by a superstrong magnetic field which has been discovered recently acts in the opposite direction and prevents the nuclei with Z52 for a nucleus to become critical stronger B are needed than without taking screening into account.Comment: 13 pages, 2 figures, version to be published in Physical Review

    Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom

    Full text link
    In an external constant magnetic field, so strong that the electron Larmour length is much shorter than its Compton length, we consider the modification of the Coulomb potential of a point charge owing to the vacuum polarization. We establish a short-range component of the static interaction in the Larmour scale, expressed as a Yukawa-like law, and reveal the corresponding "photon mass" parameter. The electrostatic force regains its long-range character in the Compton scale: the tail of the potential follows an anisotropic Coulomb law, decreasing away from the charge slower along the magnetic field and faster across. In the infinite-magnetic-field limit the potential is confined to an infinitely thin string passing though the charge parallel to the external field. This is the first evidence for dimensional reduction in the photon sector of quantum electrodynamics. The one-dimensional form of the potential on the string is derived that includes a delta-function centered in the charge. The nonrelativistic ground-state energy of a hydrogenlike atom is found with its use and shown not to be infinite in the infinite-field limit, contrary to what was commonly accepted before, when the vacuum polarization had been ignored. These results may be useful for studying properties of matter at the surface of extremely magnetized neutron stars.Comment: 45 pages, 6 figures, accepted to Phys. Rev.

    The ννγ\nu \nu \gamma Amplitude in an External Homogeneous Electromagnetic Field

    Full text link
    Neutrino-photon interactions in the presence of an external homogeneous constant electromagnetic field are studied. The ννγ\nu \nu \gamma amplitude is calculated in an electromagnetic field of the general type, when the two field invariants are nonzero.Comment: 7 pages, 1 figur

    Real and virtual photons in an external constant electromagnetic field of most general form

    Full text link
    The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered on most general grounds basing on the first principles like Lorentz- gauge- charge- and parity-invariance. We make model- and approximation-independent, but still rather informative, statements about the behavior that the requirement of causal propagation prescribes to massive and massless branches of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point electric charge far from it (a manifestation of magneto-electric phenomenon). We establish degeneracies of the polarization tensor that (under special kinematic conditions) occur due to space-time symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item

    Spallative ablation of dielectrics by X-ray laser

    Full text link
    Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration τL\tau_L is shorter than acoustic relaxation time tst_s is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics of electron-ion relaxation on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse

    ACCURATE WAVELENGTH MEASUREMENTS AND MODELING OF Fe XV TO Fe XIX SPECTRA RECORDED IN HIGH-DENSITY PLASMAS BETWEEN 13.5 AND 17 A

    Get PDF
    Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe XVI and Fe XV in the vicinity of the strong 2p → 3d transitions of Fe XVII. About 80 Δn ≥ 1 lines of Fe XV (Mg-like) to Fe XIX (O-like) were recorded between 13.8 and 17.1 A with a high spectral resolution (λ/Δλ ≈ 4000); about 30 of these lines are from Fe XVI and Fe XV. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 1020 and 1022 cm-3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe XV-XIX. HULLAC was used to calculate synthetic line intensities at Te = 200 eV and ne = 1021 cm-3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth ≈200 μm) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain

    X-ray radiation from ions with K-shell vacancies

    Get PDF
    Abstract New types of space resolved X-ray spectra produced in light matter experiments with high intensity lasers have been investigated experimentally and theoretically. This type of spectra is characterised by the disappearance of distinct resonance line emission and the appearance of very broad emission structures due to the dielectronic satellite transitions associated to the resonance lines. Atomic data calculations have shown, that rather exotic states with K-shell vacancies are involved. For quantitative spectra interpretation we developed a model for dielectronic satellite accumulation (DSA-model) in cold dense optically thick plasmas which are tested by rigorous comparison with space resolved spectra from ns-lasers. In experiments with laser intensities up to 10 19 W/cm 2 focused into nitrogen gas targets, hollow ion configurations are observed by means of soft X-ray spectroscopy. It is shown that transitions in hollow ions can be used for plasma diagnostic. The determination of the electron temperature in the long lasting recombining regime is demonstrated. In Light-matter interaction experiments with extremely high contrast (up to 10 10 ) short pulse (400 fs) lasers electron densities of n e ≈3×10 23 cm −3 at temperatures between kT e =200–300 eV have been determined by means of spectral simulations developed previously for ns-laser produced plasmas. Expansion velocities are determined analysing asymmetric optically thick line emission. Further, the results are checked by observing the spectral windows involving the region about the He α -line and the region from the He β -line to the He-like continuum. Finally, plasmas of solid density are characteristic in experiments with heavy ion beams heating massive targets. We report the first spectroscopic investigations in plasmas of this type with results on solid neon heated by Ar-ions. A spectroscopic method for the determination of the electron temperature in extreme optically thick plasmas is developed

    Indirect monitoring shot-to-shot shock waves strength reproducibility during pump-probe experiments

    Full text link
    We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ∼660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ∼2%, implying an accuracy in the derived electron plasma temperature of 5%-10% in pump-probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ∼ 0.5, the electron temperature follows Te ∼ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.T. A. Pikuz, A. Ya. Faenov, N. Ozaki, N. J. Hartley, B. Albertazzi, T. Matsuoka, K. Takahashi, H. Habara, Y. Tange, S. Matsuyama, K. Yamauchi, R. Ochante, K. Sueda, O. Sakata, T. Sekine, T. Sato, Y. Umeda, Y. Inubushi, T. Yabuuchi, T. Togashi, T. Katayama, M. Yabashi, M. Harmand, G. Morard, M. Koenig, V. Zhakhovsky, N. Inogamov, A. S. Safronova, A. Stafford, I. Yu. Skobelev, S. A. Pikuz, T. Okuchi, Y. Seto, K. A. Tanaka, T. Ishikawa, and R. Kodama, "Indirect monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments", Journal of Applied Physics 120, 035901 (2016) https://doi.org/10.1063/1.4958796

    X-ray absorption spectroscopy study of energy transport in foil targets heated by PW laser pulses

    Get PDF
    Absorption x-ray spectroscopy is proposed as a method for studying the heating of a solid-density matter excited by secondary xray radiation from a relativistic laser-produced plasma. The method was developed and applied to experiments involving thin silicon foils irradiated by 0.5–1.5 ps duration ultrahigh contrast laser pulses at intensities between 0.5×1020 and 2.5×1020 W/cm2 . The electron temperature of the material at the rear side of a target is estimated to be in the range of 140–300 eV. The diagnostic approach enables the diagnosis of warm dense matter states with low self-emissivity
    corecore