113 research outputs found

    Characterization of a novel, dominant negative KCNJ2 mutation associated with Andersen-Tawil syndrome

    Get PDF
    Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K(+) channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient presenting with signs and symptoms of Andersen-Tawil syndrome. The functional properties of the mutant subunit were characterized using voltage-clamp experiments on transiently transfected HEK-293 cells and neonatal mouse ventricular myocytes. Whole-cell current recordings of transfected HEK-293 cells demonstrated that the mutant protein Kir2.1-D71Y fails to form functional ion channels when expressed alone, but co-assembles with wild-type Kir2.1 subunits and suppresses wild-type subunit function. Further analysis revealed that current suppression requires at least two mutant subunits per channel. The D71Y mutation does not measurably affect the membrane trafficking of either the mutant or the wild-type subunit or alter the kinetic properties of the currents. Additional experiments revealed that expression of the mutant subunit suppresses native I(K1) in neonatal mouse ventricular myocytes. Simulations predict that the D71Y mutation in human ventricular myocytes will result in a mild prolongation of the action potential and potentially increase cell excitability. These experiments indicate that the Kir2.1-D71Y mutant protein functions as a dominant negative subunit resulting in reduced inwardly rectifying K(+) current amplitudes and altered cellular excitability in patients with Andersen-Tawil syndrome

    Self-Energy Correction to the Two-Photon Decay Width in Hydrogenlike Atoms

    Get PDF
    We investigate the gauge invariance of the leading logarithmic radiative correction to the two-photon decay width in hydrogenlike atoms. It is shown that an effective treatment of the correction using a Lamb-shift "potential" leads to equivalent results in both the length as well as the velocity gauges provided all relevant correction terms are taken into account. Specifically, the relevant radiative corrections are related to the energies that enter into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation condition that holds between the two photons; the form of all of these effects is different in the two gauges, but the final result is shown to be gauge invariant, as it should be. Although the actual calculation only involves integrations over nonrelativistic hydrogenic Green functions, the derivation of the leading logarithmic correction can be regarded as slightly more complex than that of other typical logarithmic terms. The dominant radiative correction to the 2S two-photon decay width is found to be -2.020536 (alpha/pi) (Zalpha)^2 ln[(Zalpha)^-2] in units of the leading nonrelativistic expression. This result is in agreement with a length-gauge calculation [S. G. Karshenboim and V. G. Ivanov, e-print physics/9702027], where the coefficient was given as -2.025(1).Comment: 9 pages, RevTe

    Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    Full text link
    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-ZZ ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of Quantum Electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-ZZ ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in Nature.Comment: Version 18/11/0

    Slowing and cooling molecules and neutral atoms by time-varying electric field gradients

    Get PDF
    A method of slowing, accelerating, cooling, and bunching molecules and neutral atoms using time-varying electric field gradients is demonstrated with cesium atoms in a fountain. The effects are measured and found to be in agreement with calculation. Time-varying electric field gradient slowing and cooling is applicable to atoms that have large dipole polarizabilities, including atoms that are not amenable to laser slowing and cooling, to Rydberg atoms, and to molecules, especially polar molecules with large electric dipole moments. The possible applications of this method include slowing and cooling thermal beams of atoms and molecules, launching cold atoms from a trap into a fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.

    The patriotism of gentlemen with red hair: European Jews and the liberal state, 1789–1939

    Get PDF
    European Jewish history from 1789–1939 supports the view that construction of national identities even in secular liberal states was determined not only by modern considerations alone but also by ancient patterns of thought, behaviour and prejudice. Emancipation stimulated unprecedented patriotism, especially in wartime, as Jews strove to prove loyalty to their countries of citizenship. During World War I, even Zionists split along national lines, as did families and friends. Jewish patriotism was interchangeable with nationalism inasmuch as Jews identified themselves with national cultures. Although emancipation implied acceptance and an end to anti-Jewish prejudice in the modern liberal state, the kaleidoscopic variety of Jewish patriotism throughout Europe inadvertently undermined the idea of national identity and often provoked anti-Semitism. Even as loyal citizens of separate states, the Jews, however scattered, disunited and diverse, were made to feel, often unwillingly, that they were one people in exile

    Circadian Transcription Contributes to Core Period Determination in Drosophila

    Get PDF
    The Clock–Cycle (CLK–CYC) heterodimer constitutes a key circadian transcription complex in Drosophila. CYC has a DNA-binding domain but lacks an activation domain. Previous experiments also indicate that most of the transcriptional activity of CLK–CYC derives from the glutamine-rich region of its partner CLK. To address the role of transcription in core circadian timekeeping, we have analyzed the effects of a CYC–viral protein 16 (VP16) fusion protein in the Drosophila system. The addition of this potent and well-studied viral transcriptional activator (VP16) to CYC imparts to the CLK–CYC-VP16 complex strongly enhanced transcriptional activity relative to that of CLK–CYC. This increase is manifested in flies expressing CYC-VP16 as well as in S2 cells. These flies also have increased levels of CLK–CYC direct target gene mRNAs as well as a short period, implicating circadian transcription in period determination. A more detailed examination of reporter gene expression in CYC-VP16–expressing flies suggests that the short period is due at least in part to a more rapid transcriptional phase. Importantly, the behavioral effects require a period (per) promoter and are therefore unlikely to be merely a consequence of generally higher PER levels. This indicates that the CLK–CYC-VP16 behavioral effects are a consequence of increased per transcription. All of this also suggests that the timing of transcriptional activation and not the activation itself is the key event responsible for the behavioral effects observed in CYC-VP16-expressing flies. The results taken together indicate that circadian transcription contributes to core circadian function in Drosophila

    Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    Get PDF
    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion

    Mutations in Wnt2 Alter Presynaptic Motor Neuron Morphology and Presynaptic Protein Localization at the Drosophila Neuromuscular Junction

    Get PDF
    Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins

    Neurexins and Neuroligins: Recent Insights from Invertebrates

    Get PDF
    During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals
    corecore