183 research outputs found

    Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade

    Full text link
    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.Comment: 4 pages, 4 figures, to appear in Proc. of "Fusion Reactor Diagnostics", eds. F. P. Orsitto et al., AIP Conf. Pro

    On velocity-space sensitivity of fast-ion D-alpha spectroscopy

    Get PDF
    The velocity-space observation regions and sensitivities in fast-ion D α (FIDA) spectroscopy measurements are often described by so-called weight functions. Here we derive expressions for FIDA weight functions accounting for the Doppler shift, Stark splitting, and the charge-exchange reaction and electron transition probabilities. Our approach yields an efficient way to calculate correctly scaled FIDA weight functions and implies simple analytic expressions for their boundaries that separate the triangular observable regions in ( v ‖ , v ⊄ )-space from the unobservable regions. These boundaries are determined by the Doppler shift and Stark splitting and could until now only be found by numeric simulation

    On the purported "backbone fluorescence" in protein three-dimensional fluorescence spectra

    Get PDF
    In this study, several proteins (albumin, lysozyme, insulin) and model compounds (Trp, Tyr, homopolypeptides) were used to demonstrate the origin of the fluorescence observed upon their excitation at 220–230 nm. In the last 10 years we have observed a worrying increase in the number of articles claiming that this fluorescence originates from the protein backbone, contrary to the established knowledge that UV protein emission is due to aromatic amino acids only. Overall, our data clearly demonstrate that the observed emission upon excitation at 220–230 nm is due to the excitation of Tyr and/or Trp, with subsequent emission from the lowest excited state (i.e. the same as obtained with 280 nm excitation) in agreement with Kasha's rule. Therefore, this fluorescence peak does not provide any information on backbone conformation, but simply reports on the local environment around the aromatic side chains, just as any traditional protein emission spectrum. The many papers in reputable journals erroneously reporting this peak assignment, contradicting 5 decades of prior knowledge, have led to the creation of a new dogma, where many authors and reviewers now take the purported backbone fluorescence as an established fact. We hope the current paper helps counter this new situation and leads to a reassessment of those papers that make this erroneous claim

    Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

    Get PDF
    We present the first measurement of a local fast-ion 2D velocity distribution function f(v||, v⊄). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion Dα (FIDA) light from the plasma centre in three views simultaneously. The measured spectra agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f(v||, v⊄) by tomographic inversion. Salient features of our measurement of f(v||, v⊄) agree reasonably well with the simulation: the measured as well as the simulated f(v||, v⊄) are lopsided towards negative velocities parallel to the magnetic field, and they have similar shapes. Further, the peaks in the simulation of f(v||, v⊄) at full and half injection energies of the neutral beam also appear in the measurement at similar velocity-space locations. We expect that we can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f(v||, v⊄) by tomographic inversion

    Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    Get PDF
    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics
    • 

    corecore