536 research outputs found

    Neutron diffraction study of lunar materials Final report

    Get PDF
    Apollo 12 lunar samples studied with neutron diffraction at room and cryogenic temperature

    The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling

    Get PDF
    Benthic fluxes (sediment-water exchange) of dissolved organic carbon (DOC) represent a poorly quantified component of sedimentary and oceanic carbon cycling. In this paper we use pore water DOC data and direct DOC benthic flux measurements to begin to quantitatively examine this problem. These results suggest that marine sediments represent a significant source of DOC to the oceans, as a lower limit of the globally-integrated benthic DOC flux is comparable in magnitude to riverine inputs of organic carbon to the oceans. Benthic fluxes of DOC also appear to be similar in magnitude to other sedimentary processes such as organic carbon oxidation (remineralization) in surface sediments and organic carbon burial with depth

    Quantum computer-aided design of quantum optics hardware

    Get PDF
    The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger-Horne-Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design

    An automaton-theoretic approach to the representation theory of quantum algebras

    Get PDF
    We develop a new approach to the representation theory of quantum algebras supporting a torus action via methods from the theory of finite-state automata and algebraic combinatorics. We show that for a fixed number mm, the torus-invariant primitive ideals in m×nm\times n quantum matrices can be seen as a regular language in a natural way. Using this description and a semigroup approach to the set of Cauchon diagrams, a combinatorial object that paramaterizes the primes that are torus-invariant, we show that for mm fixed, the number of torus-invariant primitive ideals in m×nm\times n quantum matrices satisfies a linear recurrence in nn over the rational numbers. In the 3×n3\times n case we give a concrete description of the torus-invariant primitive ideals and use this description to give an explicit formula for the number P(3,n).Comment: 31 page

    Quantum computer-aided design of quantum optics hardware

    Get PDF
    The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design

    Quantum computer-aided design of quantum optics hardware

    Get PDF
    The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design

    Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates

    Get PDF
    A unique set of geochemical pore-water data, characterizing the sulfate reduction and uppermost methanogenic zones, has been collected at the Blake Ridge (offshore southeastern North America) from Ocean Drilling Program (ODP) Leg 164 cores and piston cores. The δ13 C values of dissolved CO2(Σ CO2) are as 13 C-depleted as –37.7‰ PDB (Site 995) at the sulfate-methane interface, reflecting a substantial contribution of isotopically light carbon from methane. Although the geochemical system is complex and difficult to fully quantify, we use two methods to constrain and illustrate the intensity of anaerobic methane oxidation in Blake Ridge sediments. An estimate using a two-component mixing model suggests that ~24% of the carbon residing in the Σ CO2 pool is derived from biogenic methane. Independent diagenetic modeling of a methane concentration profile (Site 995) indicates that peak methane oxidation rates approach 0.005 μmol cm–3 yr–1, and that anaerobic methane oxidation is responsible for consuming ~35% of the total sulfate flux into the sediments. Thus, anaerobic methane oxidation is a significant biogeochemical sink for sulfate, and must affect interstitial sulfate concentrations and sulfate gradients. Such high proportions of sulfate depletion because of anaerobic methane oxidation are largely undocumented in continental rise sediments with overlying oxic bottom waters. We infer that the additional amount of sulfate depleted through anaerobic methane oxidation, fueled by methane flux from below, causes steeper sulfate gradients above methane-rich sediments. Similar pore water chemistries should occur at other methane-rich, continental-rise settings associated with gas hydrates

    Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Get PDF
    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment

    Программное обеспечение для обучения в малых группах

    Full text link
    This article focuses on the method of group training which represents one of the most actual and perspective forms of the organization of educational process. Authors confirm the theoretical conclusions with the experiment made with students of specialty "Information Systems and Technologies". Besides, article includes the description opportunities of the program adapted for work in small groups.В данной статье рассматривается метод группового обучения, который представляет собой одну из наиболее актуальных и перспективных форм организации учебного процесса. Авторы подтверждают свои теоретические выводы экспериментом, проведенным со студентами старших курсов специальности «Информационные системы и технологии». Кроме того, статья включает описание возможностей программы, адаптированной для выполнения общего задания в группах
    corecore