34,093 research outputs found

    Lateral-directional control of the x-15 airplane

    Get PDF
    Lateral directional control and stability characteristics of X-15 aircraf

    Assessing the climate impacts of Chinese dietary choices using a telecoupled global food trade and local land use framework

    Get PDF
    Global emissions trajectories developed to meet the 2⁰C temperature target are likely to rely on the widespread deployment of negative emissions technologies and/or the implementation of substantial terrestrial carbon sinks. Such technologies include afforestation, carbon capture and storage (CCS) and bioenergy with carbon capture and storage (BECCS), but mitigation options for agriculture appear limited. For example, using the Global Calculator tool (http://www.globalcalculator.org/), under a 2⁰C pathway, the ‘forests and other land use’ sector is projected to become a major carbon sink, reaching -15 GtCO2e yr-1 by 2050, compared to fossil emissions of 21 GtCO2e yr-1. At the same time, rates of agricultural emissions remain static at about 6 GtCO2e yr-1, despite increasing demands for crop and livestock production to meet the forecast dietary demands of the growing and increasingly wealthy global population. Emissions in the Global Calculator are sensitive to the assumed global diet, and particularly to the level and type of meat consumption, which in turn drive global land use patterns and agricultural emissions. Here we assess the potential to use a modified down-scaled Global Calculator methodology embedded within the telecoupled global food trade framework, to estimate the agricultural emissions and terrestrial carbon stock impacts in China and Brazil, arising from a plausible range of dietary choices in China. These dietary choices are linked via telecoupling mechanisms to Brazilian crop production (e.g. Brazilian soy for Chinese animal feed provision) and drive land and global market dynamics. ‘Spill-over’ impacts will also be assessed using the EU and Malawi as case studies

    Directed flow as effect of transient matter rotation in hadron and nucleus collisions

    Full text link
    We discuss directed flow introduced for description of nucleus collisions and consider its possible behavior in hadronic and nuclei reactions due to rotation of the transient matter.Comment: 18 pages, 6 figure

    Inactivation of the major hemolysin gene influences expression of the nonribosomal peptide synthetase gene swrA in the insect pathogen Serratia sp. strain SCBI

    Get PDF
    Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens. The role of the major hemolysin gene in the insect pathogen Serratia sp. SCBI was investigated using both forward and reverse genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in loss of hemolysis, but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility as well as increased antimicrobial activity. qRT-PCR analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA, which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly variable antibiotic activity, motility, virulence and hemolysis phenotypes that were dependent on the site of disruption within this 17.75 KB gene. When introduced into E. coli, swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences expression of swrA, these results suggest swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR

    ABSENCE OF HAEMATOZOA IN BREEDING MACARONI EUDYPTES CHRYSOLOPHUS AND ROCKHOPPER E. CHRYSOCOME PENGUINS AT MARION ISLAND

    Get PDF
    Haematozoan infections cause the death of penguins in captivity, but seldom in the wild. No haematozoa were found in 89 blood smears taken from macaroni penguins Eudyptes chrysolophus or 80 smears from eastern rockhopper penguins E. chrysocome filholi at subantarctic Marion Island between October and November 2001. Discussion centres on the possibility of vector introduction and establishment under conditions of climatic and/or anthropogenic change.Afr. J. mar. Sci. 25: 499–50

    Magnetometry with entangled atomic samples

    Full text link
    We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting statistics. For polarized light and polarized atoms, a description of the non-classical components of the collective spin angular momentum for the atoms and the collective Stokes vectors of the light-field in terms of effective gaussian position and momentum variables is practically exact. The gaussian formalism describes the dynamics of the system very effectively and accounts explicitly for the back-action on the atoms due to measurement and for the estimate of the magnetic field. Multi-component magnetic fields are estimated by the measurement of suitably chosen atomic observables and precision and efficiency is gained by dividing the atomic gas in two or more samples which are entangled by the dispersive atom-light interaction.Comment: 8 pages, 11 figure

    Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender

    Get PDF
    This work was funded by a grant from the Engineering and Physical Sciences Research Council (EP/G030693/1) and supported by the Oxford British Heart Foundation Centre of Research Excellence and the National Institute for Health Research Oxford Biomedical Research Centr
    corecore