14,107 research outputs found

    Quaternionic potentials in non-relativistic quantum mechanics

    Full text link
    We discuss the Schrodinger equation in presence of quaternionic potentials. The study is performed analytically as long as it proves possible, when not, we resort to numerical calculations. The results obtained could be useful to investigate an underlying quaternionic quantum dynamics in particle physics. Experimental tests and proposals to observe quaternionic quantum effects by neutron interferometry are briefly reviewed.Comment: 21 pages, 16 figures (ps), AMS-Te

    Quaternionic eigenvalue problem

    Full text link
    We discuss the (right) eigenvalue equation for H\mathbb{H}, C\mathbb{C} and R\mathbb{R} linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows to translate the quaternionic problem into an {\em equivalent} real or complex counterpart. Interesting applications are found in solving differential equations within quaternionic formulations of quantum mechanics.Comment: 13 pages, AMS-Te

    Graphene tests of Klein phenomena

    Full text link
    Graphene is characterized by chiral electronic excitations. As such it provides a perfect testing ground for the production of Klein pairs (electron/holes). If confirmed, the standard results for barrier phenomena must be reconsidered with, as a byproduct, the accumulation within the barrier of holes.Comment: 8 page

    Resonant laser tunnelling

    Full text link
    We propose an experiment involving a gaussian laser tunneling through a twin barrier dielectric structure. Of particular interest are the conditions upon the incident angle for resonance to occur. We provide some numerical calculations for a particular choice of laser wave length and dielectric refractive index which confirm our expectations.Comment: 15 pages, 6 figure

    Potential Scattering in Dirac Field Theory

    Full text link
    We develop the potential scattering of a spinor within the context of perturbation field theory. As an application, we reproduce, up to second order in the potential, the diffusion results for a potential barrier of quantum mechanics. An immediate consequence is a simple generalization to arbitrary potential forms, a feature not possible in quantum mechanics.Comment: 7 page

    Dirac Equation Studies in the Tunnelling Energy Zone

    Full text link
    We investigate the tunnelling zone V0 < E < V0+m for a one-dimensional potential within the Dirac equation. We find the appearance of superluminal transit times akin to the Hartman effect.Comment: 12 pages, 4 figure

    Dirac Spinors and Flavor Oscillations

    Full text link
    In the standard treatment of particle oscillations the mass eigenstates are implicitly assumed to be scalars and, consequently, the spinorial form of neutrino wave functions is not included in the calculations. To analyze this additional effect, we discuss the oscillation probability formula obtained by using the Dirac equation as evolution equation for the neutrino mass eigenstates. The initial localization of the spinor state also implies an interference between positive and negative energy components of mass eigenstate wave packets which modifies the standard oscillation probability.Comment: 14 pages, 1 figure, AMS-Te

    Experimental evidence of laser power oscillations induced by the relative Fresnel (Goos-Haenchen) phase

    Full text link
    The amplification of the relative Fresnel (Goos-Haenchen) phase by an appropriate number of total internal reflections and the choice of favorable incidence angles allow to observe full oscillations in the power of a DPSS laser transmitted through sequential BK7 blocks. The experimental results confirm the theoretical predictions. The optical apparatus used in this letter can be seen as a new type of two-phase ellipsometric system where the phase of the complex refractive index is replaced by the relative Fresnel (Goos-Haenchen) phase.Comment: 7 pages, 3 figures, 1 tabl
    • …
    corecore