10,614 research outputs found
Double-exchange theory of ferroelectric polarization in orthorhombic manganites with twofold periodic magnetic texture
We argue that many aspects of improper ferroelectric activity in orthorhombic
manganites can be rationalized by considering the limit of infinite
intra-atomic splitting between the majority- and minority-spin states (or the
double exchange limit), which reduces the problem to the analysis of a spinless
double exchange (DE) Hamiltonian. We apply this strategy to the low-energy
model, derived from the first-principles calculations, and combine it with the
Berry-phase theory of electric polarization. We start with the simplest
two-orbital model, describing the behavior of the eg bands, and apply it to the
E-type antiferromagnetic (AFM) phase, which in the DE limit effectively breaks
up into one-dimensional zigzag chains. We derive an analytical expression for
the electronic polarization (Pel) and explain how it depends on the orbital
ordering and the energy splitting Delta between eg states. Then, we evaluate
parameters of this model, starting from a more general five-orbital model for
all Mn 3d bands and constructing a new downfolded model for the eg bands. From
the analysis of these parameters, we conclude that the behavior of Pel in
realistic manganites corresponds to the limit of large Delta. We further
utilize this property in order to derive an analytical expression for Pel in a
general two-fold periodic magnetic texture, based on the five-orbital model and
the perturbation-theory expansion for the Wannier functions in the first order
of 1/Delta. This expression explains the functional dependence of Pel on the
relative directions of spins. Furthermore, it suggests that Pel is related to
the asymmetry of the transfer integrals, which should simultaneously have
symmetric and antisymmetric components. Finally, we explain how the
polarization can be switched between orthorhombic directions a and c by
inverting the zigzag AFM texture in every second ab plane.Comment: 41 page, 10 figure
Cosmic ray acceleration by stellar wind. Simulation for heliosphere
The solar wind deceleration by the interstellar medium may result in the existence of the solar wind terminal shock. In this case a certain fraction of thermal particles after being heated at the shock would obtain enough energy to be injected to the regular acceleration process. An analytical solution for the spectrum in the frame of a simplified model that includes particle acceleration at the shock front and adiabatic cooling inside the stellar wind cavity has been derived. It is shown that the acceleration of the solar wind particles at the solar wind terminal shock is capable of providing the total flux, spectrum and radial gradients of the low-energy protons close to one observed in the interplanetary space
Unitarity cutting rules for the nucleus excitation and topological cross sections in hard production off nuclei from nonlinear k_t-factorization
At the partonic level, a typical final state in small-x deep inelastic
scattering off nuclei and hard proton-nucleus collisions can be characterized
by the multiplicity of color-excited nucleons. Within reggeon field theory,
each color-excited nucleon is associated with the unitarity cut of the pomeron
exchanged between the projectile and nucleus. In this communication we derive
the unitarity rules for the multiplicity of excited nucleons, alias cut
pomerons, alias topological cross sections, for typical hard dijet production
processes. We demonstrate how the coupled-channel non-Abelian intranuclear
evolution of color dipoles, inherent to pQCD, gives rise to the reggeon field
theory diagrams for final states in terms of the uncut, and two kinds of cut,
pomerons. Upon the proper identification of the uncut and cut pomeron
exchanges, the topological cross sections for dijet production follow in a
straightforward way from the earlier derived nonlinear k_t - factorization
quadratures for the inclusive dijet cross sections. The concept of a coherent
(collective) nuclear glue proves extremely useful for the formulation of
reggeon field theory vertices of multipomeron - cut and uncut - couplings to
particles and between themselves. A departure of our unitarity cutting rules
from the ones suggested by the pre-QCD Abramovsky-Kancheli-Gribov rules, stems
from the coupled-channel features of intranuclear pQCD. We propose a
multiplicity re-summation as a tool for the isolation of topological cross
sections for single-jet production.Comment: 53 pages, 16 eps-figures, to appear in Phys. Rev.
Final state interaction effects in scattering
We present a systematic study of the final-state interaction (FSI) effects in
scattering in the CEBAF energy range with particular emphasis on the
phenomenon of the angular anisotropy of the missing momentum distribution. We
find that FSI effects dominate at missing momentum p_m \gsim 1.5 fm.
FSI effects in the excitation of the -wave state are much stronger than in
the excitation of the -wave.Comment: LATEX, 11 pages, 5 figures available from the authors on request,
KFA-IKP(TH)-1994-3
Non-linear BFKL dynamics: color screening vs. gluon fusion
A feasible mechanism of unitarization of amplitudes of deep inelastic
scattering at small values of Bjorken is the gluon fusion. However, its
efficiency depends crucially on the vacuum color screening effect which
accompanies the multiplication and the diffusion of BFKL gluons from small to
large distances. From the fits to lattice data on field strength correlators
the propagation length of perturbative gluons is fermi. The
probability to find a perturbative gluon with short propagation length at large
distances is suppressed exponentially. It changes the pattern of (dif)fusion
dramatically. The magnitude of the fusion effect appears to be controlled by
the new dimensionless parameter , with the diffraction cone
slope standing for the characteristic size of the interaction region. It
should slowly decrease at large . Smallness of the
ratio makes the non-linear effects rather weak even at lowest
Bjorken available at HERA. We report the results of our studies of the
non-linear BFKL equation which has been generalized to incorporate the running
coupling and the screening radius as the infrared regulator.Comment: 16 pages, 2 figures, version accepted for publication, references
adde
Intrinsic spin orbit torque in a single domain nanomagnet
We present theoretical studies of the intrinsic spin orbit torque (SOT) in a
single domain ferromagnetic layer with Rashba spin-orbit coupling (SOC) using
the non-equilibrium Green's function formalism for a model Hamiltonian. We find
that, to the first order in SOC, the intrinsic SOT has only the field-like
torque symmetry and can be interpreted as the longitudinal spin current induced
by the charge current and Rashba field. We analyze the results in terms of the
material related parameters of the electronic structure, such as band filling,
band width, exchange splitting, as well as the Rashba SOC strength. On the
basis of these numerical and analytical results, we discuss the magnitude and
sign of SOT. Our results show that the different sign of SOT in identical
ferromagnetic layers with different supporting layers, e.g. Co/Pt and Co/Ta,
could be attributed to electrostatic doping of the ferromagnetic layer by the
support.Comment: 10 pages, 2 figure
Pulsed Laser Interactions with Space Debris: Target Shape Effects
Among the approaches to the proposed mitigation and remediation of the space
debris problem is the de-orbiting of objects in low Earth orbit through
irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a
thin surface layer causes target recoil, resulting in the depletion of orbital
angular momentum and accelerated atmospheric re-entry. However, both the
magnitude and direction of the recoil are shape dependent, a feature of the
laser-based remediation concept that has received little attention. Since the
development of a predictive capability is desirable, we have investigated the
dynamical response to ablation of objects comprising a variety of shapes. We
derive and demonstrate a simple analytical technique for calculating the
ablation-driven transfer of linear momentum, emphasizing cases for which the
recoil is not exclusively parallel to the incident beam. For the purposes of
comparison and contrast, we examine one case of momentum transfer in the
low-intensity regime, where photon pressure is the dominant momentum transfer
mechanism, showing that shape and orientation effects influence the target
response in a similar, but not identical, manner. We address the related
problem of target spin and, by way of a few simple examples, show how ablation
can alter the spin state of a target, which often has a pronounced effect on
the recoil dynamics.Comment: 51 pages, 14 figures, to appear in Advances in Space Researc
- …
