228 research outputs found

    Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer

    Get PDF
    The main subject of this contribution is the all-optical control over the state of polarization (SOP) of light, understood as the control over the SOP of a signal beam by the SOP of a pump beam. We will show how the possibility of such control arises naturally from a vectorial study of pump-probe Raman interactions in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar model, which is only valid for high-PMD fibers (here, PMD stands for the polarization-mode dispersion). Modern technology enables manufacturing of low-PMD fibers, the description of which requires a full vectorial model. Within this model we gain full control over the SOP of the signal beam. In particular we show how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the presence of the polarized pump. This trapping effect is used in experiments for the design of new nonlinear optical devices named Raman polarizers. Along with the property of improved signal amplification, these devices transform an arbitrary input SOP of the signal beam into one and the same SOP towards the output end. This output SOP is fully controlled by the SOP of the pump beam. We overview the sate-of-the-art of the subject and introduce the notion of an "ideal Raman polarizer"

    A universal optical all-fiber omnipolarizer

    Get PDF
    Wherever the polarization properties of a light beam are of concern, polarizers and polarizing beamsplitters (PBS) are indispensable devices in linear-, nonlinear-and quantum-optical schemes. By the very nature of their operation principle, transformation of incoming unpolarized or partially polarized beams through these devices introduces large intensity variations in the fully polarized outcoming beam(s). Such intensity fluctuations are often detrimental, particularly when light is post-processed by nonlinear crystals or other polarization-sensitive optic elements. Here we demonstrate the unexpected capability of light to self-organize its own state-of-polarization, upon propagation in optical fibers, into universal and environmentally robust states, namely right and left circular polarizations. We experimentally validate a novel polarizing device-the Omnipolarizer, which is understood as a nonlinear dual-mode polarizing optical element capable of operating in two modes-as a digital PBS and as an ideal polarizer. Switching between the two modes of operation requires changing beam's intensity

    Band-gap solitons in nonlinear optically-induced lattices

    Full text link
    We introduce novel optical solitons that consist of a periodic and a spatially localized components coupled nonlinearly via cross-phase modulation. The spatially localized optical field can be treated as a gap soliton supported by the optically-induced nonlinear grating. We find different types of these band-gap composite solitons and demonstrate their dynamical stability.Comment: 4 pages, 5 figure

    Modelling survival and connectivity of Mnemiopsis leidyi in the south-western North Sea and Scheldt estuaries

    Get PDF
    Three different models were applied to study the reproduction, survival and dispersal of Mnemiopsis leidyi in the Scheldt estuaries and the southern North Sea: a high-resolution particle tracking model with passive particles, a low-resolution particle tracking model with a reproduction model coupled to a biogeochemical model, and a dynamic energy budget (DEB) model. The results of the models, each with its strengths and weaknesses, suggest the following conceptual situation: (i) the estuaries possess enough retention capability to keep an overwintering population, and enough exchange with coastal waters of the North Sea to seed offshore populations; (ii) M. leidyi can survive in the North Sea, and be transported over considerable distances, thus facilitating connectivity between coastal embayments; (iii) under current climatic conditions, M. leidyi may not be able to reproduce in large numbers in coastal and offshore waters of the North Sea, but this may change with global warming; however, this result is subject to substantial uncertainty. Further quantitative observational work is needed on the effects of temperature, salinity and food availability on reproduction and on mortality at different life stages to improve models such as used here

    Broadband polarization pulling using Raman amplification

    Get PDF
    The Raman gain based polarization pulling process in a copropagating scheme is investigated. We map the degree of polarization, the angle between the signal and pump output Stokes vectors, the mean signal gain and its standard deviation considering the entire Raman gain bandwidth. We show that, in the undepleted regime (signal input power similar to 1 mu W), the degree of polarization is proportional to the pump power and changes with the signal wavelength, following the Raman gain shape. In the depleted regime (signal input power greater than or similar to 1mW), the highest values for the degree of polarization are no more observed for the highest pump powers. Indeed, we show that exists an optimum pump power leading to a maximum degree of polarization. (C) 2011 Optical Society of Americ

    Mechanical probing of liquid foam aging

    Full text link
    We present experimental results on the Stokes experiment performed in a 3D dry liquid foam. The system is used as a rheometric tool : from the force exerted on a 1cm glass bead, plunged at controlled velocity in the foam in a quasi static regime, local foam properties are probed around the sphere. With this original and simple technique, we show the possibility of measuring the foam shear modulus, the gravity drainage rate and the evolution of the bubble size during coarsening

    Vector modulation instability induced by vacuum fluctuations in highly birefringent fibers in the anomalous dispersion regime

    Full text link
    We report a detailed experimental study of vector modulation instability in highly birefringent optical fibers in the anomalous dispersion regime. We prove that the observed instability is mainly induced by vacuum fluctuations. The detuning of the spectral peaks agrees with linear perturbation analysis. The exact shape of the spectrum is well reproduced by numerical integration of stochastic nonlinear Schrodinger equations describing quantum propagation.Comment: 11 pages, 4 figures, to be published in Optics Letter

    Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass

    Get PDF
    International audienceRecent research has been focused on the ability to manipulate a light beam in such a way to hide, namely to cloak, an event over a finite time or localization in space. The main idea is to create a hole or a gap in the spatial or time domain so as to allow for an object or data to be kept hidden for a while and then to be restored. By enlarging the field of applications of this concept to telecommunications, researchers have recently reported the possibility to hide transmitted data in an optical fibre. Here we report the first experimental demonstration of perpetual temporal spying and blinding process of optical data in fibre-optic transmission line based on polarization bypass. We successfully characterize the performance of our system by alternatively copying and then concealing 100% of a 10-Gbit s-1 transmitted signal.

    Angle of repose and segregation in cohesive granular matter

    Full text link
    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid is small and it forms liquid bridges between particles, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two dimensional silo through the transparent glass side walls. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure
    • …
    corecore