3,366 research outputs found
Thermodynamic Irreversibility from high-dimensional Hamiltonian Chaos
This paper discusses the thermodynamic irreversibility realized in
high-dimensional Hamiltonian systems with a time-dependent parameter. A new
quantity, the irreversible information loss, is defined from the Lyapunov
analysis so as to characterize the thermodynamic irreversibility. It is proved
that this new quantity satisfies an inequality associated with the second law
of thermodynamics. Based on the assumption that these systems possess the
mixing property and certain large deviation properties in the thermodynamic
limit, it is argued reasonably that the most probable value of the irreversible
information loss is equal to the change of the Boltzmann entropy in statistical
mechanics, and that it is always a non-negative value. The consistency of our
argument is confirmed by numerical experiments with the aid of the definition
of a quantity we refer to as the excess information loss.Comment: LaTeX 43 pages (using ptptex macros) with 11 figure
Capture of free-flying payloads with flexible space manipulators
A recently developed control system for capturing free-flying payloads with flexible manipulators is discussed. Three essential points in this control system are, calculating optimal path, using a vision sensor for an external sensor, and controlling active vibration. Experimental results are shown using a planar flexible manipulator
Simple Model of Propagating Flame Pulsations
A simple model which exhibits dynamical flame properties in 1D is presented.
It is investigated analytically and numerically. The results are applicable to
problems of flame propagation in supernovae Ia.Comment: 10 pages, 8 figures, revised version accepted by MNRA
The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae
Context. The precise determination of the present-day expansion rate of the
Universe, expressed through the Hubble constant , is one of the most
pressing challenges in modern cosmology. Assuming flat CDM,
inference at high redshift using cosmic-microwave-background data from Planck
disagrees at the 4.4 level with measurements based on the local
distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe
Ia), often referred to as "Hubble tension". Independent,
cosmological-model-insensitive ways to infer are of critical importance.
Aims. We apply an inverse-distance-ladder approach, combining strong-lensing
time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are
merely good relative distance indicators, but by anchoring them to strong
gravitational lenses one can obtain an measurement that is relatively
insensitive to other cosmological parameters. Methods. A cosmological parameter
estimate is performed for different cosmological background models, both for
strong-lensing data alone and for the combined lensing + SNe Ia data sets.
Results. The cosmological-model dependence of strong-lensing measurements
is significantly mitigated through the inverse distance ladder. In combination
with SN Ia data, the inferred consistently lies around 73-74 km s
Mpc, regardless of the assumed cosmological background model. Our
results agree nicely with those from the local distance ladder, but there is a
>2 tension with Planck results, and a ~1.5 discrepancy with
results from an inverse distance ladder including Planck, Baryon Acoustic
Oscillations and SNe Ia. Future strong-lensing distance measurements will
reduce the uncertainties in from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio
Dark Viscous Fluid coupled with Dark Matter and future singularity
We study effects of viscous fluid coupled with dark matter in our universe.
We consider bulk viscosity in the cosmic fluid and we suppose the existence of
a coupling between fluid and dark matter, in order to reproduce a stable de
Sitter universe protected against future-time singularities. More general
inhomogeneous fluids are studied related to future singularities.Comment: 11 page
General Analysis of Inflation in the Jordan frame Supergravity
We study various inflation models in the Jordan frame supergravity with a
logarithmic Kahler potential. We find that, in a class of inflation models
containing an additional singlet in the superpotential, three types of
inflation can be realized: the Higgs-type inflation, power-law inflation, and
chaotic inflation with/without a running kinetic term. The former two are
possible if the holomorphic function dominates over the non-holomorphic one in
the frame function, while the chaotic inflation occurs when both are
comparable. Interestingly, the fractional-power potential can be realized by
the running kinetic term. We also discuss the implication for the Higgs
inflation in supergravity.Comment: 16 pages, 1 figur
Imprinting the memory into paste and its visualization as crack patterns in drying process
In the drying process of paste, we can imprint into the paste the order how
it should be broken in the future. That is, if we vibrate the paste before it
is dried, it remembers the direction of the initial external vibration, and the
morphology of resultant crack patterns is determined solely by the memory of
the direction. The morphological phase diagram of crack patterns and the
rheological measurement of the paste show that this memory effect is induced by
the plasticity of paste.Comment: 4 pages, 3 figures, submitted to JPS
Power-law inflation with a nonminimally coupled scalar field
We consider the dynamics of power-law inflation with a nonminimally coupled
scalar field . It is well known that multiple scalar fields with
exponential potentials lead to an inflationary solution even if the each scalar field is not
capable to sustain inflation. In this paper, we show that inflation can be
assisted even in the one-field case by the effect of nonminimal coupling. When
is positive, since an effective potential which arises by a conformal
transformation becomes flatter compared with the case of for ,
we have an inflationary solution even when the universe evolves as
non-inflationary in the minimally coupled case. For the negative , the
assisted inflation can take place when evolves in the region of
\.Comment: 12 pages, 6 figures, to appear in Phys. Rev.
The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films
Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased
The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films
Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased
- …