14,665 research outputs found
Quantum many-body models with cold atoms coupled to photonic crystals
Using cold atoms to simulate strongly interacting quantum systems represents
an exciting frontier of physics. However, as atoms are nominally neutral point
particles, this limits the types of interactions that can be produced. We
propose to use the powerful new platform of cold atoms trapped near
nanophotonic systems to extend these limits, enabling a novel quantum material
in which atomic spin degrees of freedom, motion, and photons strongly couple
over long distances. In this system, an atom trapped near a photonic crystal
seeds a localized, tunable cavity mode around the atomic position. We find that
this effective cavity facilitates interactions with other atoms within the
cavity length, in a way that can be made robust against realistic
imperfections. Finally, we show that such phenomena should be accessible using
one-dimensional photonic crystal waveguides in which coupling to atoms has
already been experimentally demonstrated
Approximate gauge symmetry of composite vector bosons
It can be shown in a solvable field theory model that the couplings of the
composite vector bosons made of a fermion pair approach the gauge couplings in
the limit of strong binding. Although this phenomenon may appear accidental and
special to the vector boson made of a fermion pair, we extend it to the case of
bosons being constituents and find that the same phenomenon occurs in more an
intriguing way. The functional formalism not only facilitates computation but
also provides us with a better insight into the generating mechanism of
approximate gauge symmetry, in particular, how the strong binding and global
current conservation conspire to generate such an approximate symmetry. Remarks
are made on its possible relevance or irrelevance to electroweak and higher
symmetries.Comment: Correction of typos. The published versio
Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction
This work was supported by a United States Department of Agriculture-Cooperative State Research, Education, and Extension Service grant (no. 2009-35318-05032), a Biotechnology Research grant (no. 2007-BRG-1223) from the North Carolina Biotechnology Center, and a startup fund from the Golden LEAF Foundation to the Biomanufacturing Research Institute and Technology Enterprise (BRITE).Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.Publisher PDFPeer reviewe
A new mechanism for a naturally small Dirac neutrino mass
A mechanism is proposed in which a right-handed neutrino zero mode and a
right-handed charged lepton zero mode can be localized at the same place along
an extra compact dimension while having markedly different spreads in their
wave functions: a relatively narrow one for the neutrino and a rather broad one
for the charged lepton. In their overlaps with the wave function for the
left-handed zero modes, this mechanism could produce a natural large hierarchy
in the effective Yukawa couplings in four dimensions, and hence a large
disparity in masses.Comment: 6 pages (2 with figures), twocolumn forma
Superradiance for atoms trapped along a photonic crystal waveguide
We report observations of superradiance for atoms trapped in the near field
of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge
near the D transition of atomic cesium, strong interaction is achieved
between trapped atoms and guided-mode photons. Following short-pulse
excitation, we record the decay of guided-mode emission and find a superradiant
emission rate scaling as for average atom number atoms, where
is the peak single-atom radiative decay
rate into the PCW guided mode and is the Einstein- coefficient
for free space. These advances provide new tools for investigations of
photon-mediated atom-atom interactions in the many-body regime.Comment: 11 pages, 10 figure
Dynamical coupled-channel model of kaon-hyperon interactions
The pi N --> KY and KY --> KY reactions are studied using a dynamical
coupled-channel model of meson-baryon interactions at energies where the baryon
resonances are strongly excited. The channels included are: pi N, K \Lambda,
and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710),
P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910),
P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660),
D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY
transition potentials are derived from effective Lagrangians using a unitary
transformation method. The dynamical coupled-channel equations are simplified
by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N
partial-wave amplitudes and a phenomenological off-shell function. Two models
have been constructed. Model A is built by fixing all coupling constants and
resonance parameters using SU(3) symmetry, the Particle Data Group values, and
results from a constituent quark model. Model B is obtained by allowing most of
the parameters to vary around the values of model A in fitting the data. Good
fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been
achieved. The investigated kinematics region in the center-of-mass frame goes
from threshold to 2.5 GeV. The constructed models can be imbedded into
associated dynamical coupled-channel studies of kaon photo- and
electro-production reactions.Comment: 35 pages, 11 Figure
A Study on Tourism Development Strategy of Kaohsiung City in Taiwan after Urban Style Regeneration
Urban tourism has gradually been emphasized in past years; especially, it is regarded as a savior of urban regeneration in old industrial cities. When losing the competitive advantages and getting declined, old industrial cities are facing the challenge of transformation. The development of urban tourism is considered as the opportunity of industrial cities in dark recession that they start to involve in the development of tourism. Analytic Hierarchy Process (AHP) is applied in this study to evaluate key success factors in the tourism development strategy of Kaohsiung City after the urban style regeneration. AHP is used for confirming the levels of various evaluation factors. The first hierarchy contains four evaluation dimensions, and 14 evaluation standards are covered in the second hierarchy. The results reveal the important sequence of four evaluation factors in the second hierarchy as (1) marketing activity, (2) management strategy, (3) recreational environment, and (4) infrastructure, where the importance of evaluation factors in the third hierarchy is sequenced as (1) urban attraction, (2) environmental facility maintenance, (3) celebrations, (4) local characteristics, and (5) natural landscape. The research results and suggestions in this study are expected to enhance the tourism development of Kaohsiung City in Taiwan after the urban style regeneration.
Keywords: urban style, tourism development strategy, key success factors, Delphi method, AH
Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions
Recently reported transverse momentum distributions of strange hadrons
produced in Pb(158AGeV) on Pb collisions and corresponding results from the
relativistic quantum molecular dynamics (RQMD) approach are examined. We argue
that the experimental observations favor a scenario in which multi-strange
hadrons are formed and decouple from the system rather early at large energy
densities (around 1 GeV/fm). The systematics of the strange and non-strange
particle spectra indicate that the observed transverse flow develops mainly in
the late hadronic stages of these reactions.Comment: 4 pages, 4 figure
- …