514 research outputs found

    The Case ∣ Acute heart failure with elevated cardiac enzymes

    Get PDF

    GTP and Ca2+ Modulate the Inositol 1,4,5-Trisphosphate-Dependent Ca2+ Release in Streptolysin O-Permeabilized Bovine Adrenal Chromaffin Cells

    Get PDF
    The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 μM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTPγS) could not replace GTP but prevented the action of GTP. The effects of GTP and GTPγS were reversible. Neither GTP nor GTPγS induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 μM free Ca2+, a half-maximal Ca2+ release was elicited with ∼0.1 μM IP3. At 1 μM free Ca2+, no Ca2+ release was observed with 0.1 μM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 μM) were required to evoke Ca2+ release. At 8 μM free Ca2+, even 0.25 μM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 μM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. Depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m

    Correlating the nanostructure and electronic properties of InAs nanowires

    Full text link
    The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are ~4X larger in the nominally defect-free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.Comment: Related papers at http://pettagroup.princeton.ed

    Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors

    Full text link
    We investigate the role of quantum confinement on the performance of gas sensors based on two-dimensional InAs membranes. Pd-decorated InAs membranes configured as H2 sensors are shown to exhibit strong thickness dependence, with ~100x enhancement in the sensor response as the thickness is reduced from 48 to 8 nm. Through detailed experiments and modeling, the thickness scaling trend is attributed to the quantization of electrons which favorably alters both the position and the transport properties of charge carriers; thus making them more susceptible to surface phenomena

    The muscarinic receptor antagonist propiverine exhibits α1-adrenoceptor antagonism in human prostate and porcine trigonum

    Get PDF
    Combination therapy of male lower urinary tract symptoms with α(1)-adrenoceptor and muscarinic receptor antagonists attracts increasing interest. Propiverine is a muscarinic receptor antagonist possessing additional properties, i.e., block of L-type Ca(2+) channels. Here, we have investigated whether propiverine and its metabolites can additionally antagonize α(1)-adrenoceptors. Human prostate and porcine trigone muscle strips were used to explore inhibition of α(1)-adrenoceptor-mediated contractile responses. Chinese hamster ovary (CHO) cells expressing cloned human α(1)-adrenoceptors were used to determine direct interactions with the receptor in radioligand binding and intracellular Ca(2+) elevation assays. Propiverine concentration-dependently reversed contraction of human prostate pre-contracted with 10 μM phenylephrine (-log IC(50) [M] 4.43 ± 0.08). Similar inhibition was observed in porcine trigone (-log IC(50) 5.01 ± 0.05), and in additional experiments consisted mainly of reduced maximum phenylephrine responses. At concentrations ≥1 μM, the propiverine metabolite M-14 also relaxed phenylephrine pre-contracted trigone strips, whereas metabolites M-5 and M-6 were ineffective. In radioligand binding experiments, propiverine and M-14 exhibited similar affinity for the three α(1)-adrenoceptor subtypes with -log K (i) [M] values ranging from 4.72 to 4.94, whereas the M-5 and M-6 did not affect [(3)H]-prazosin binding. In CHO cells, propiverine inhibited α(1)-adrenoceptor-mediated Ca(2+) elevations with similar potency as radioligand binding, again mainly by reducing maximum responses. In contrast to other muscarinic receptor antagonists, propiverine exerts additional L-type Ca(2+)-channel blocking and α(1)-adrenoceptor antagonist effects. It remains to be determined clinically, how these additional properties contribute to the clinical effects of propiverine, particularly in male voiding dysfunctio

    The Stability of Hybrid Perovskites with UiO-66 Metal–Organic Framework Additives with Heat, Light, and Humidity

    Get PDF
    This study is devoted to investigating the stability of metal–organic framework (MOF)-hybrid perovskites consisting of CH3NH3PbI3 (MAPbI3) and UiO-66 without a functional group and UiO-66 with different COOH, NH2,and F functional groups under external influences including heat, light, and humidity. By conducting crystallinity, optical, and X-ray photoelectron spectra (XPS) measurements after long-term aging, all of the prepared MAPbI3@UiO-66 nanocomposites (with pristine UiO-66 or UiO-66 with additional functional groups) were stable to light soaking and a relative humidity (RH) of 50%. Moreover, the UiO-66 and UiO-66-(F)4 hybrid perovskite films possessed a higher heat tolerance than the other two UiO-66 with the additional functional groups of NH2 and COOH. Tthe MAPbI3@UiO-66-(F)4 delivered the highest stability and improved optical properties after aging. This study provides a deeper understanding of the impact of the structure of hybrid MOFs on the stability of the composite films. © 2022 by the authors.Russian Foundation for Basic Research, РФФИ, (21-52-52002)Ministry of Education, MOE, (109M4074, 111L9006)Ministry of Education and Science of the Russian Federation, MinobrnaukaNational Taiwan University, NTU, (111L7818)National Science and Technology Council, NSTC, (109-2628-E-002-008-MY3, 110-2923-E-002-007-MY3, 111-2124-M-002-021, 111-2628-E-002-009, 111-2634-F-002-016, 111-2923-E-002-006-MY3)The XPS measurements were supported by Russian Foundation for Basic Research (projects No. 21-52-52002). I.S.Z. and A.I.K gratefully acknowledge the funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program). C.-C.C. is grateful for the financial support from the National Science and Technology Council (NSTC) in Taiwan (111-2634-F-002-016, 109-2628-E-002-008-MY3, 110-2923-E-002-007-MY3, 111-2923-E-002-006-MY3, 111-2628-E-002-009, 111-2124-M-002-021), the Top University Project of National Taiwan University (111L7818), and the Ministry of Education (MOE) in Taiwan (109M4074 and 111L9006)

    Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus

    Get PDF
    Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression

    Realizing High Brightness Quasi-2D Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-Off via Multifunctional Interface Engineering

    Get PDF
    Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m−2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages. © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.Ministry of Education, MOE: 111L9006; National Science and Technology Council, NSTC: 110‐2923‐E‐002‐007‐MY3, 111‐2124‐M‐002‐021, 111‐2628‐E‐002‐009, 111‐2634‐F‐002‐016, 111‐2923‐E‐002‐006‐MY3; Academia Sinica, AS: AS-CDA-108-M08; Russian Foundation for Basic Research, РФФИ: 21‐52‐52002, AAAA‐A18–118020190098‐5; Ministry of Education and Science of the Russian Federation, Minobrnauka; National Taiwan University, NTU: 112L7810C.-C.C. thanks financial supports from the Ministry of Education (111L9006), the National Science and Technology Council (NSTC) in Taiwan (111-2634-F-002-016, 111-2628-E-002-009, 111-2124-M-002-021, 110-2923-E-002-007-MY3, 111-2923-E-002-006-MY3), and Top University Project of National Taiwan University (112L7810). Y.J.L. acknowledge financial supports from the NSTC in Taiwan (109-2112-M-001-043-MY3, 110-2124-M-001-008-MY3) and Academia Sinica (AS-CDA-108-M08). I.S.Z. thank financial supports from Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program). E.Z.K. gratefully acknowledge Russian Foundation for Basic Research (21-52-52002) and Ministry of Science and Higher Education of the Russian Federation (theme “Electron” No. AAAA-A18–118020190098-5).C.‐C.C. thanks financial supports from the Ministry of Education (111L9006), the National Science and Technology Council (NSTC) in Taiwan (111‐2634‐F‐002‐016, 111‐2628‐E‐002‐009, 111‐2124‐M‐002‐021, 110‐2923‐E‐002‐007‐MY3, 111‐2923‐E‐002‐006‐MY3), and Top University Project of National Taiwan University (112L7810). Y.J.L. acknowledge financial supports from the NSTC in Taiwan (109‐2112‐M‐001‐043‐MY3, 110‐2124‐M‐001‐008‐MY3) and Academia Sinica (AS‐CDA‐108‐M08). I.S.Z. thank financial supports from Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority‐2030 Program). E.Z.K. gratefully acknowledge Russian Foundation for Basic Research (21‐52‐52002) and Ministry of Science and Higher Education of the Russian Federation (theme “Electron” No. AAAA‐A18–118020190098‐5)

    Aggregation kinetics of human mesenchymal stem cells under wave motion

    Get PDF
    Human mesenchymal stem cells (hMSCs) are a primary candidate in cell therapy and regenerative medicine to treat a wide range of diseases in clinical trials. Recent studies showed that hMSC have innate ability to self-assemble into three-dimensional (3D) aggregates that enhances their therapeutic functions with augmented multi-lineage differentiation potential, migration ability, secretion of anti-inflammatory and angiogenic factors, and resistance to ischemic conditions post-transplantation. To date, many laboratory methods have been developed for hMSC aggregation, including hanging drops, centrifugation with microfabricated surface, cell suspension on a low attachment surface, thermal lifting, and microfluidic technologies. However, these methods have limited scalability and/or poor control in aggregate size, and cannot meet the required production in clinical trials. The objective of current study is to investigate the conditions for the scalable production of hMSC aggregates in non-adherent plates under wave motion. The repeated back and forth wave motion induced by rocking provides mixing of bulk medium under low shear stress that facilitates cell-cell collisions and subsequent aggregation. Our results showed that aggregate size can be controlled by adjusting the combination of rocking angle (3˚, 6˚, and 9˚) and rocking speed (10, 15, and 20 rpm). To quantify the impact of fluid shear stress on aggregation kinetics, simulation of shear stress distribution by COMSOL Multiphysics® showed a time-dependent oscillatory function under different rocking condition. In addition, an inverse correlation between aggregate size and maximum shear stress was observed and that both can be regressed by a two-variable linear regression of rocking angle and rocking speed. In the regression, the coefficient of rocking angle is much higher than that of rocking speed, revealing that rocking angle has a more significant effect than rocking speed on both aggregate size and shear stress. In addition to fluid shear stress, the effects of cell binding molecules, the frequency of cell-cell collision, and the extension of cultivation time on aggregate size distribution were also investigated. Analysis of the therapeutic functional supported that hMSCs derived from engineered aggregates in the wave motion system have enhanced their therapeutic properties compared to those from monolayer culture
    corecore