GTP and Ca²⁺ Modulate the Inositol 1,4,5-Trisphosphate-Dependent Ca²⁺ Release in Streptolysin O-Permeabilized Bovine Adrenal Chromaffin Cells

K. J. Föhr, G. Ahnert-Hilger, B. Stecher, J. Scott, and M. Gratzl

Abteilung Anatomie und Zellbiologie der Universität Ulm, Ulm, F.R.G.

Abstract: The inositol 1,4,5-trisphosphate (IP₃)-induced Ca²⁺ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP₃-induced Ca²⁺ release was followed by Ca²⁺ reuptake into intracellular compartments. The IP₃-induced Ca²⁺ release diminished after sequential applications of the same amount of IP₃. Addition of 20 μM GTP fully restored the sensitivity to IP₃. Guanosine 5'-O-(3-thio)triphosphate (GTP₇S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP₇S were reversible. Neither GTP nor GTP₇S induced release of Ca²⁺ in the absence of IP₃. The amount of Ca²⁺ whose release was induced by IP₃ depended on the free Ca²⁺ concentration of the medium. At 0.3 μM free Ca²⁺, a half-maximal Ca²⁺ release was observed with 0.1 μM IP₃; at this Ca²⁺

Intact bovine adrenal chromaffin cells, depending on the stimulus, use extracellular and/or intracellular sources to increase the cytoplasmic free Ca²⁺ concentration (cf. O'Sullivan and Burgoyne, 1989). Release of intracellular stored Ca²⁺ can be induced from the endoplasmic reticulum by inositol 1,4,5-trisphosphate (IP_3) , which is produced by the activation of phospholipase C at the plasma membrane (Berridge and Irvine, 1984, 1989). In digitonin-permeabilized adrenal chromaffin cells, high concentrations of IP₃ were required to induce release of Ca²⁺. Furthermore, a second dose of IP₃ failed to induce release of Ca²⁺, and the Ca²⁺ released could not be taken up again by the compartment (Stoehr et al., 1986; Kao, 1988). These findings argue against a major contribution of the IP₃-sensitive Ca^{2+} compartment during stimulation of adrenal chromaffin cells. One possibility is that digitonin used

concentration, higher concentrations of IP₃ (0.25 μ M) were required to evoke Ca²⁺ release. At 8 μ M free Ca²⁺, even 0.25 μ M IP₃ failed to induce release of Ca²⁺ from the store. The IP₃-induced Ca²⁺ release at constant low (0.2 μ M) free Ca²⁺ concentrations correlated directly with the amount of stored Ca²⁺. Depending on the filling state of the intracellular compartment, 1 mol of IP₃ induced release of between 5 and 30 mol of Ca²⁺. **Key Words:** Inositol 1,4,5-trisphosphate—Ca²⁺ release—Streptolysin O—Bovine adrenal chromaffin cells— GTP—Guanosine 5'-O-(3-thio)triphosphate. Föhr K. J. et **al.** GTP and Ca²⁺ modulate the inositol 1,4,5-trisphosphatedependent Ca²⁺ release in streptolysin O-permeabilized bovine adrenal chromaffin cells. J. Neurochem. **56**, 665– 670 (1991).

in the previous studies for permeabilization may cause disintegration of intracellular membranes and thus explain unsatisfactory IP₃-induced Ca²⁺ release. In the present study we therefore permeabilized the cells with streptolysin O (SLO) from β -hemolytic streptococci whose action is restricted to the plasma membrane (Hugo et al., 1986; Bhakdi and Tranum-Jensen, 1987; Ahnert-Hilger et al., 1989*a*). This pore-forming protein has been introduced as an excellent tool to investigate the role of Ca²⁺ during exocytosis (cf. Ahnert-Hilger et al., 1989*b*).

Using SLO-permeabilized cells and a Ca^{2+} -specific electrode, we found that release of Ca^{2+} is induced by low concentrations of IP₃ and that the amount of released Ca^{2+} is comparable to that observed in other secretory cells (cf. Berridge, 1987). Furthermore, we demonstrate here that the IP₃-induced Ca^{2+} release is

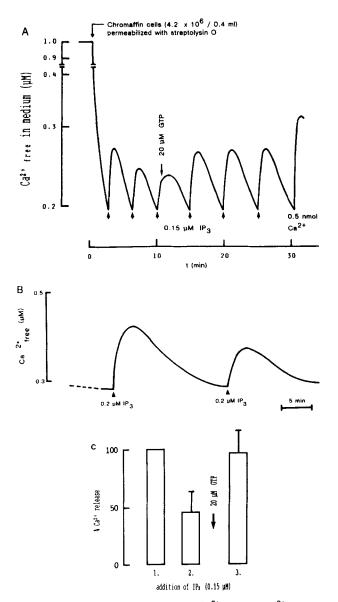
Received February 23, 1990; final revised manuscript received July 3, 1990; accepted August 14, 1990.

Address correspondence and reprint requests to Prof. Dr. M. Gratzl at Abteilung Anatomie und Zellbiologie der Universität Ulm, Postfach 4066, D-7900 Ulm, F.R.G.

Abbreviations used: GTP γ S, guanosine 5'-O-(3-thio)triphosphate; IP₃, inositol 1,4,5-trisphosphate; MOPS, 3-(*N*-morpholino)propanesulfonic acid; SLO, streptolysin O.

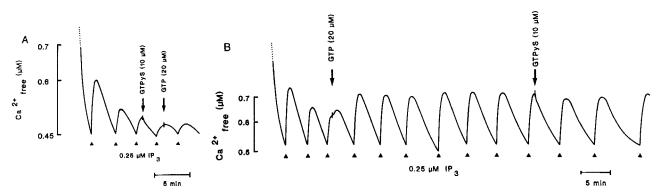
modulated by GTP and depends on the amount of stored Ca^{2+} as well as on the cytoplasmic free Ca^{2+} concentration.

MATERIALS AND METHODS


The pore-forming protein SLO was purified as previously described (Bhakdi et al., 1984) and kindly provided by S. Bhakdi (Gießen, F.R.G.). IP₃ was from Boehringer (Mannheim, F.R.G.). GTP and guanosine 5'-O-(3-thio)triphosphate (GTP γ S) were from Sigma (München, F.R.G.). Ca²⁺-selective membranes containing the neutral carrier ETH 129 were kindly provided by W. Simon (ETH, Zürich, Switzerland). Azur A was from Fluka (Neu-Ulm, F.R.G.). All other reagents were of analytical grade.

Cell culture, permeabilization, and Ca²⁺ content measurements

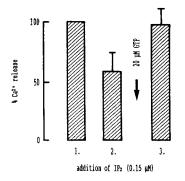
Bovine adrenal glands were obtained from the local slaughterhouse. Chromaffin cells were prepared and put into short-time cultures as described previously (Livett, 1984) with some modifications (Stecher et al., 1989). Isolated chromaffin cells (1×10^7) were plated on 60-mm-diameter dishes and used after 2 days of cultivation. The cells were washed three times with medium A of the following composition (in mmol/ L): 150 KCl, 5 NaN₃, 20 3-(N-morpholino)propanesulfonic acid (MOPS; pH 7.2), and 1 EGTA. For permeabilization, the cells were suspended in the same medium containing 300 hemolytic units of SLO/107 cells on ice and then incubated for 10 min at 30°C. Permeabilization was controlled by counting the azur A-stained cells (Föhr et al., 1989). After permeabilization the cells were washed three times by centrifugation (2 min, 400 g_{av}) in medium A without EGTA. The Ca²⁺ content was measured with a Ca²⁺-specific electrode in 0.4-0.5 ml of medium B (medium A without EGTA but with 2 mM Mg²⁺-ATP) as described previously (Föhr et al., 1989).


RESULTS AND DISCUSSION

In the presence of 2 mM Mg²⁺-ATP and 5 mM NaN₃, which blocks Ca²⁺ uptake by mitochondria (Fulceri et al., 1989), Ca²⁺ was rapidly taken up by the permeabilized adrenal chromaffin cells. A low concentration of IP₃ (here, 0.15 μM) was sufficient to induce Ca^{2+} release at Ca^{2+} concentrations occurring in resting cells (Fig. 1A). The Ca^{2+} release was followed by an immediate reuptake, and subsequent applications of the same amount of IP₃ (0.15 μM) resulted in a stepwise decrease in the amount of released Ca^{2+} (Fig. 1A). This decrease in the amount of released Ca^{2+} was also observed if the cells had been left for a longer time before addition of IP₃ (Fig. 1B), a result indicating that the apparent desensitization does not reflect a gradually falling Ca²⁺ content baseline. As determined in a series of experiments, a second addition of IP₃ elicited $\sim 50\%$ of the signal obtained by the first application (Fig. 1C). A similar desensitization occurring during repeated application of nonsaturating IP₃ concentrations was also reported by Stoehr et al. (1986) for chromaffin cells and by Rossier et al. (1987) for adrenocortical cells. This apparent desensitization was completely

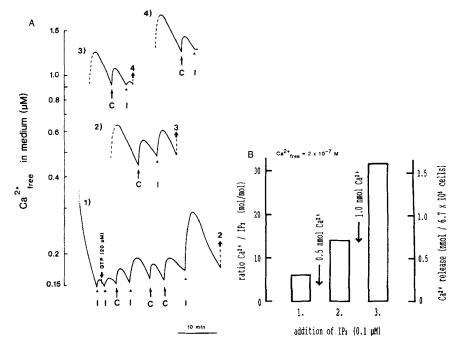
FIG. 1. Effect of GTP on IP₃-induced Ca²⁺ release. Ca²⁺ release induced by IP₃ from permeabilized cells was studied without additional loading of the Ca²⁺ store (as in Fig. 4). Sequential additions of 0.15 μ M IP₃ led to a decreased Ca²⁺ release. A: After a single dose of 20 μ M GTP, the amounts of Ca²⁺, whose release was induced by IP₃, were similar in size, as observed during the first release. B: The IP₃-induced Ca²⁺ release also decreases when the IP₃-sensitive Ca²⁺ compartment is maximally filled by additional Ca²⁺ (see Fig. 4A) and left longer to obtain a flat baseline. C: Summary of 17 independent experiments carried out as in A with the exception that addition of GTP was started after the second IP₃ application. Under these conditions (without maximal filling of the Ca²⁺ compartment), 100% corresponds to the release of 1.0 ± 0.2 nmol of Ca²⁺/10⁷ cells (mean ± SD). Data are mean ± SD (bars) values.

overcome by a single addition of 20 μM GTP (Figs. 1A and C, 2B, and 3). Therefore, if not stated otherwise, 20 μM GTP was included from the beginning of the experiments to avoid desensitization on repeated IP₃ applications. Whereas addition of 20 μM GTP im-


FIG. 2. GTP γ S blocks the GTP effect on IP₃-induced Ca²⁺ release. GTP γ S (10 μ M) completely blocks the effect of GTP (20 μ M) on the IP₃-induced Ca²⁺ release when added before GTP (**A**) but has no effect on the IP₃-induced Ca²⁺ release when added after addition of GTP (**B**). These results are representative of three similar experiments.

mediately restored sensitivity to IP₃, 10 μM GTP caused a stepwise recovery of the maximal IP₃ response within 30 min (data not shown).

Neither GTP itself nor the stable analogue $GTP\gamma S$ induced release of Ca2+ on its own. However, the effect of GTP on the desensitization was completely blocked when GTP γ S (10 μ M) was added before GTP (20 μ M) (Fig. 2A). On the other hand, when desensitization was first abolished by GTP, addition of $GTP\gamma S$ could not restore desensitization (Fig. 2B). The effect of GTP was reversible (Fig. 3). When permeabilized cell preparations were first analyzed as shown in Fig. 1A and C and subsequently washed twice in 150 mM KCl, 20 mM MOPS (pH 7.2), and 5 mM NaN₁, similar desensitization occurred, which was again abolished by 20 μM GTP (compare Fig. 1C and 3). In intact cells, desensitization should not occur because the GTP concentration is $\sim 300 \ \mu M$ (Kleinecke et al., 1979), which is 10-fold higher than that required to sustain the IP₃induced Ca^{2+} release. Indeed, desensitization of the IP₃-induced Ca^{2+} release and its recovery induced by GTP were only observed when permeabilized cells were washed as described in Materials and Methods. We assume that endogenous GTP during this procedure is sufficiently removed, because the effect of added GTP (see Fig. 3) also disappears after the cells are washed.


The mechanism underlying the action of GTP on the IP₃-induced Ca²⁺ release is not understood. An involvement of a "classical" guanine nucleotide-binding protein is rather unlikely because GTP γ S could not replace GTP, but rather blocked its effect. In this respect the hydrolysis of GTP seems crucial for its action, which in the classical guanine nucleotide-binding protein terminates the activation. The reversibility of the GTP effect argues against a GTP-catalyzed fusion of intracellular membranes as suggested by Comerford and Dawson (1988). A GTP-driven phosphorylation as observed in liver cells (Dawson et al., 1986) in conjunction with a cellular phosphatase could account for the reversibility of the GTP effect on desensitization reported here. An alternative interpretation of the present data would be that GTP reversibly activates connections between IP₃-sensitive and -insensitive compartments (Ghosh et al., 1989). The action of GTP seems to be not relevant in the tumor cell lines RINA2 (rat insulinoma) or PC12 (rat pheochromocytoma) because these cells showed no decreased response to IP₃ with time (Föhr et al., 1989). In addition, GTP did not increase the IP₃-induced Ca²⁺ release in these cell lines (K. J. Föhr, unpublished data).

Besides GTP, the IP₃-induced Ca²⁺ release also depends on the amount of stored Ca²⁺. Under the experimental condition shown in Fig. 4A, the IP₃-sensitive Ca²⁺ compartment is only partially filled. The permeabilized cells are still able to take up more Ca²⁺. This additional Ca²⁺ is directly available for the subsequent Ca²⁺ release. Filling of the compartment (by subsequent additions and uptake of 0.5 nmol of Ca²⁺ by 6.7 × 10⁶ cells) increased the Ca²⁺ release due to 0.1 μM IP₃ (Fig. 4A). After the first addition of 0.5 nmol of Ca²⁺, the IP₃-induced Ca²⁺ release increased by 84 ± 31.5% (n = 6, mean ± SD). After addition of 1.5 nmol of Ca²⁺, the IP₃-sensitive Ca²⁺ compartment

FIG. 3. The effect of GTP on the IP₃-induced Ca²⁺ release is reversible. Cells were first treated as shown in Fig. 1A. Thereafter, they were washed three times as described in Materials and Methods and resuspended in medium containing 150 mM KCl, 20 mM MOPS (pH 7.2), and 5 mM NaN₃. Then the cells took up Ca²⁺ in the presence of Mg²⁺-ATP, and an almost similar decrease of Ca²⁺ release on repeated IP₃ application was observed (compare with Fig. 1C). The decreased Ca²⁺ release could be abolished by addition of 20 μ M GTP. Data are mean ± SD (bars) values (n = 4).

FIG. 4. The Ca2+ release is proportional to the amount of stored Ca2+ and is inhibited by the medium free Ca2+ concentration. A: Permeabilized cells (6.7×10^6 cells in a volume of 0.5 ml) were challenged with pulses of 0.1 µM IP3 (arrowheads). Arrows (C) indicate additions of 0.5 nmol of Ca2+, which was rapidly sequestered. In this way the amount of Ca2+ whose release was induced by IP3 increased. Subsequently the medium free Ca2+ concentration was increased by addition of an appropriate amount of Ca2+, and Ca2+ release induced by 0.1 µM IP₃ was again determined. B: The data shown here are calculated from the experiment shown in A (bottom), which was representative of three similar experiments carried out at 0.2 µM free Ca2+.

is maximally filled because further Ca^{2+} cannot be sequestered. Then, 0.1 μM IP₃ (corresponding to 0.05 nmol of IP₃ in a total volume of 0.5 ml) induced release of 1.6 nmol of Ca^{2+} from 6.7 × 10⁶ cells (Fig. 4). Thus, it can be calculated that one molecule of IP₃ induced the release of up to 30 Ca^{2+} (Fig. 4B). This indicates that the signal can be considerably amplified at the level of the endoplasmic reticulum. A similar ratio between IP₃ and released Ca^{2+} was found using permeabilized RINA2 and PC12 cells (Föhr et al., 1989).

The Ca²⁺ release directly depended on the IP₃ concentration, with a half-maximal Ca²⁺ release at ~ 0.1 μM IP₃ and a maximal response at 0.25 μM IP₃ (Fig. 5). Maximal IP₃ concentrations induced release of almost 4 nmol of $Ca^{2+}/10^7$ cells (Fig. 5). This is only 10% of the IP₃ concentration necessary to induce release of Ca²⁺ from digitonin-permeabilized chromaffin cells (Stoehr et al., 1986). In addition, the amount of Ca^{2+} released (1.2 nmol/10⁷ cells) in the previous report (Stoehr et al., 1986) is only one-third when compared with the 4 nmol of $Ca^{2+}/10^7$ cells found here. One explanation may be that the digitonin-permeabilized cells lose the ability to take up additional Ca^{2+} . This interpretation is supported by the minute amounts of ⁴⁵Ca²⁺ whose release was induced by IP₃ from a nonmitochondrial intracellular compartment in digitonin-permeabilized chromaffin cells (Kao, 1988). In contrast, the present data demonstrate that the IP₃-sensitive Ca²⁺ compartment plays an important role in intracellular Ca²⁺ signaling and control of exocytosis within chromaffin cells.

The IP₃-induced Ca^{2+} release is strongly inhibited by the free Ca^{2+} concentration found in the cytosol of stimulated chromaffin cells (Fig. 4A and 6). To investigate the Ca²⁺ release as a function of the free Ca²⁺ concentration, the Ca²⁺ stores were first completely loaded at the lowest Ca²⁺ concentration investigated (Fig. 4A). GTP (20 μ M) was present to avoid desensitization, and Ca²⁺ release was induced with 0.1 μ M IP₃. To reach the desired higher free Ca²⁺ concentration, appropriate amounts of Ca²⁺ were added, followed by the next IP₃ application (0.1 μ M IP₃). During this stepwise increase of the medium Ca²⁺ concentration, we found that 0.1 μ M IP₃ could only induce Ca²⁺ release up to a free medium Ca²⁺ concentration of 1 μ M. The inhibitory effect of Ca²⁺ on the IP₃-induced Ca²⁺ release could be overcome by elevating the amount of

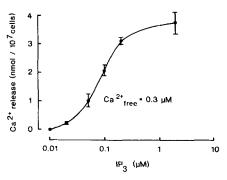
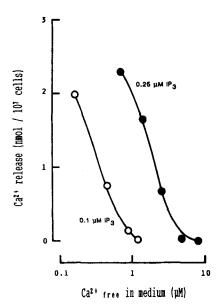



FIG. 5. Ca²⁺ release as a function of the IP₃ concentration. The permeabilized cells were suspended in medium B containing 2 mM Mg²⁺-ATP. The Ca²⁺ stores were first filled maximally with Ca²⁺ (several additions of Ca²⁺ until no further Ca²⁺ uptake occurred at the free Ca²⁺ concentration indicated). Then 20 μ M GTP was added, and IP₃-induced Ca²⁺ release was started. The amount of Ca²⁺ released from 10⁷ cells as determined from three experiments carried out at a free Ca²⁺ concentrations of 0.3 μ M with 3–6 × 10⁶ cells/400 μ I of medium B is shown; data are mean ± SD (bars) values.

FIG. 6. Ca²⁺ release induced by two different IP₃ concentrations as a function of the free Ca²⁺ concentration. Ca²⁺ stores were first loaded with Ca²⁺ (as described in Fig. 4A). IP₃-induced Ca²⁺ release was examined with 0.1 and 0.25 μ M IP₃ in the presence of 20 μ M GTP at the free Ca²⁺ concentration in the medium indicated at the abscissa. The experiment with 0.1 μ M IP₃ was repeated three times with similar results. No Ca²⁺ release at >1 μ M free Ca²⁺ was observed with this IP₃ concentration (see also Fig. 4A).

IP₃ (here 0.25 μM ; Fig. 6). However, at free Ca²⁺ concentrations of >8 μM no further release of Ca²⁺ could be induced, even when higher IP₃ concentrations were applied. Thus, in endocrine cells a negative feedback control of the IP₃-induced Ca²⁺ release by Ca²⁺ itself exists. It is noteworthy that a release of 4 nmol of Ca²⁺ within 10⁷ chromaffin cells [assuming a cell volume of $6 \,\mu l/10^7$ cells as reported by Hampton and Holz (1983) and disregarding Ca²⁺ buffering by the cells] would yield an intracellular free Ca²⁺ concentration of >600 μM . Inhibition of IP₃-induced Ca²⁺ release by Ca²⁺ as documented in Fig. 6 are among the mechanisms that assure that such high and probably poisonous Ca²⁺ concentrations are not reached within the cells by IP₃induced Ca²⁺ release from intracellular compartments. Indeed, stimulation of nonpermeabilized chromaffin cells with various stimuli led to an increase of the intracellular free Ca²⁺ concentration between 200 and 400 nM above basal values (Cheek et al., 1989). An inhibitory effect of Ca²⁺ on IP₃-induced Ca²⁺ release has also been found in other permeabilized cell preparations (Hirata et al., 1984; Chueh and Gill, 1986; Joseph et al., 1989), which may be a consequence of the recently discovered inhibition of IP₃ binding to its receptor protein (Worley et al., 1987; Danoff et al., 1988; Supattapone et al., 1988). On the other hand, IP₃-induced Ca²⁺ release from thrombocytes is insensitive to $1-100 \ \mu M$ free Ca²⁺ (Brass and Joseph, 1985).

In summary, we have demonstrated that adrenal chromaffin cells, in contrast to earlier reports (Stoehr et al., 1986; Kao, 1988), exhibit a highly active IP₃-

induced Ca^{2+} uptake system from which release of Ca^{2+} can be induced by low levels of IP₃. The release is immediately followed by Ca^{2+} resequestration, and GTP assures full activity during repetitive stimulation. It can thus be concluded that the Ca^{2+} release from intracellular stores of chromaffin cells yields enough Ca^{2+} for the activation of intracellular processes such as exocytosis.

Acknowledgment: This work was supported by the Deutsche Forschungsgemeinschaft (Gr 681). For technical help in the construction and use of the Ca^{2+} -specific electrode we are indebted to S. Galler (Konstanz, F.R.G.). The technical assistance of Mrs. M. Rudolf is gratefully acknowledged.

REFERENCES

- Ahnert-Hilger G., Bader M. F., Bhakdi S., and Gratzl M. (1989a) Introduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC12) by permeabilization with streptolysin O: inhibitory effect of tetanus toxin on catecholamine secretion. J. Neurochem. 52, 1751–1758.
- Ahnert-Hilger G., Mach W., Föhr K. J., and Gratzl M. (1989b) Poration by alphatoxin and streptolysin O: an approach to analyze intracellular processes. *Methods Cell Biol.* 31, 63–90.
- Berridge M. J. (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56, 159– 193.
- Berridge M. J. and Irvine R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. *Nature* 312, 315-321.
- Berridge M. J. and Irvine R. F. (1989) Inositol phosphates and cell signalling. *Nature* 341, 197-205.
- Bhakdi S. and Tranum-Jensen J. (1987) Damage to mammalian cells by proteins that form transmembranes pores. *Pharmacology* **107**, 147–223.
- Bhakdi S., Roth M., Sziegoleit A., and Tranum-Jensen J. (1984) Isolation and identification of two hemolytic forms of streptolysin O. Infect. Immun. 46, 394–400.
- Brass L. F. and Joseph S. K. (1985) A role for inositol trisphosphate in intracellular Ca²⁺ mobilization and granule secretion in platelets. J. Biol. Chem. 260, 15172–15179.
- Cheek T. R., O'Sullivan A. J., Morteon R. B., Berridge M. J., and Burgoyne R. D. (1989) Spatial localization of the stimulus-induced rise in cytosolic Ca²⁺ in bovine adrenal chromaffin cells. *FEBS Lett.* 247, 429–434.
- Chueh S.-H. and Gill D. L. (1986) Inositol-1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J. Biol. Chem. 261, 13883– 13886.
- Comerford J. G. and Dawson A. P. (1988) The mechanism of action of GTP on Ca²⁺ efflux from rat liver microsomal vesicles. *Biochem. J.* 249, 89–93.
- Danoff S. K., Supattapone S., and Snyder S. H. (1988) Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. *Biochem. J.* 254, 701-705.
- Dawson A. P., Comerford J. G., and Fulton D. V. (1986) The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca²⁺ efflux from a rat liver microsomal fraction. *Biochem. J.* 234, 311–315.
- Föhr K. J., Scott J., Ahnert-Hilger G., and Gratzl M. (1989) Characterization of the inositol 1,4,5-trisphosphate induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. Biochem. J. 262, 83-89.
- Fulceri R., Romani A., Bellomo G., and Benedetti A. (1989) Liver cytosolic non-dialysable factor(s) can counteract GTP-dependent Ca²⁺ release in rat liver microsomal fractions. *Biochem. Biophys. Res. Commun.* 163, 823–829.

- Ghosh T. K., Mullaney J. M., Tarazi F. I., and Gill D. L. (1989) GTP-activated communication between distinct inositol 1,4,5trisphosphate-sensitive and -insensitive calcium pools. *Nature* 340, 236–239.
- Hampton R. V. and Holz R. W. (1983) Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J. Cell Biol. 96, 1082-1088.
- Hirata M., Suematsu E., Hashimoto T., Hamachi T., and Koga T. (1984) Release of Ca^{2+} from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. *Biochem. J.* 223, 229–236.
- Hugo F., Reichwein J., Arvand M., Krämer S., and Bhakdi S. (1986) Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infect. Immun. 54, 641–645.
- Joseph S. K., Rice H. L., and Williamson J. R. (1989) The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. *Biochem.* J. 258, 261–265.
- Kao L.-S. (1988) Calcium homeostasis in digitonin-permeabilized bovine chromaffin cells. J. Neurochem. 51, 221-227.
- Kleinecke J., Düls C., and Söling H.-D. (1979) Subcellular compartmentation of guanine nucletides and functional relationship

between the adenine and guanine nucleotide systems in isolated hepatocytes. FEBS Lett. 107, 198-202.

- Livett B. (1984) Adrenal medullary chromaffin cells in vitro. *Physiol. Rev.* 64, 1103-1161.
- O'Sullivan A. J. and Burgoyne R. D. (1989) A comparison of bradykinin, angiotensin II and muscarinic stimulation of cultured bovine adrenal chromaffin cells. *Biosci. Rep.* 9, 243–252.
- Rossier M. F., Krause K. H., Lew P. D., Capponi A. M., and Vallotton M. B. (1987) Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells. J. Biol. Chem. 262, 4053-4058.
- Stecher B., Gratzl M., and Ahnert-Hilger G. (1989) Reductive chain separation of botulinum A toxin—a prerequisite to its inhibitory action on exocytosis in chromaffin cells. *FEBS Lett.* 248, 23– 27.
- Stoehr S. J., Smolen J. E., Holz R. W., and Agranoff W. (1986) Inositol trisphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells. J. Neurochem. 46, 637– 640.
- Supattapone S., Worley P. F., Baraban J. M., and Snyder S. H. (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263, 1530-1534.
- Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., and Snyder S. H. (1987) Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262, 12132–12136.