42,628 research outputs found

    Buoyant magnetic flux ropes in a magnetized stellar envelope: Idealized numerical 2.5-D MHD simulations

    Get PDF
    Context: The context of this paper is buoyant toroidal magnetic flux ropes, which is a part of flux tube dynamo theory and the framework of solar-like magnetic activity. Aims: The aim is to investigate how twisted magnetic flux ropes interact with a simple magnetized stellar model envelope--a magnetic "convection zone"--especially to examine how the twisted magnetic field component of a flux rope interacts with a poloidal magnetic field in the convection zone. Method: Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical magneto-hydrodynamic (MHD) simulations. Results: It is illustrated that twisted toroidal magnetic flux ropes can interact with a poloidal magnetic field in the atmosphere to cause a change in both the buoyant rise dynamics and the flux rope's geometrical shape. The details of these changes depend primarily on the polarity and strength of the atmospheric field relative to the field strength of the flux rope. It is suggested that the effects could be verified observationally.Comment: 8 pages, 5 figures (9 files), accepted by A&

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, ÎČ-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped ÎČ-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of ÎČ-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting

    Get PDF
    The official published version of this Article can be found at the link below - Copyright @ 2006 ASM InternationalAn investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the beta-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the beta-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 +/- 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.This work is supported by the EPSR

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Al–Mg–Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Al–Mg–Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Al–Mg–Si–Mn–Fe and Al–Mg–Si–Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Al–Mg–Si–Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same α-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, ÎČ-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Al–Mg–Si alloy, the identified Fe-rich intermetallics included the compact α-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped ÎČ-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of α-AlFeMnSi intermetallics and suppresses the formation of ÎČ-AlFe phase in the Al–Mg–Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Efficient quantum computation within a disordered Heisenberg spin-chain

    Full text link
    We show that efficient quantum computation is possible using a disordered Heisenberg spin-chain with `always-on' couplings. Such disorder occurs naturally in nanofabricated systems. Considering a simple chain setup, we show that an arbitrary two-qubit gate can be implemented using just three relaxations of a controlled qubit, which amounts to switching the on-site energy terms at most twenty-one times.Comment: To appear in Phys. Rev.

    An experimental study on a motion sensing system for sports training

    Get PDF
    In sports science, motion data collected from athletes is used to derive key performance characteristics, such as stride length and stride frequency, that are vital coaching support information. The sensors for use must be more accurate, must capture more vigorous events, and have strict weight and size requirements, since they must not themselves affect performance. These requirements mean each wireless sensor device is necessarily resource poor and yet must be capable of communicating a considerable amount of data, contending for the bandwidth with other sensors on the body. This paper analyses the results of a set of network traffic experiments that were designed to investigate the suitability of conventional wireless motion sensing system design ïżœ which generally assumes in-network processing - as an efficient and scalable design for use in sports training

    Characterization of the residual stresses in spray-formed steels using neutron diffraction

    Get PDF
    Neutron diffraction was used to characterize the residual stresses in an as-sprayed tube-shaped steel preform. The measured residual stress distributions were compared with those simulated using finite element method by taking into account the effects of the thermal history, porosity and different phases of the sprayed preform. The porosity was measured using X-ray microcomputed tomography. The study revealed for the first time the correlation between the distribution of porosity and residual stress developed in the as-sprayed preform

    Soft power: Power of attraction or confusion?

    Get PDF
    Despite its popularity soft power remains power of confusion. The paper examines the concept, with a special focus on the nature and sources of soft power. Nye’s notion of soft power is largely ethnocentric and based on the assumption that there is a link between attractiveness and the ability to influence others in international relations. This poses two problems: Firstly, a country has many different actors. Some of them like the attraction and others don’t. Whether the attraction will lead to the ability to influence the policy of the target country depends on which groups in that country find it attractive and how much control they have on policymaking. Secondly, policymaking at the state level is far more complicated than at the personal level; and has different dynamics that emphasise the rational considerations. This leaves little room for emotional elements thus significantly reducing the effect of soft power. Given the nature of soft power being uncontrollable and unpredictable, it would be impossible to wield soft power in any organised and coordinated fashion as Nye suggested. Furthermore, the relationship between two countries is shaped by many complex factors. It is ultimately decided by the geopolitics and strategic interests of nations, in which soft power may play only a limited role. The paper also discusses the link between soft power and nation branding as both concepts are concerned with a nation’s influence on the world stage. Public diplomacy is a subset of nation branding that focuses on the political brand of a nation; whereas nation branding is about how a nation as whole to reshape the international opinions. A successful nation branding campaign will help create a more favourable and lasting image among the international audience thus further enhancing a country’s soft power
    • 

    corecore