209 research outputs found

    H2O contents and hydrogen isotopic composition of apatite crystals from L, LL5-6 ordinary chondrites.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Fe-rich olivine in brecciated eucrite Northwest Africa 2339: petrography and mineralogy.

    Get PDF
    第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月18日(金) 国立国語研究所 2階講

    XANES and Mg isotopic analyses of spinels in Ca-Al-rich inclusions: Evidence for formation under oxidizing conditions

    Get PDF
    Ti valence measurements in MgAl_2O_4 spinel from calcium-aluminum-rich inclusions (CAIs) by X-ray absorption near-edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti^(+4). Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI-like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti^(+3)-rich if they equilibrated with CAI liquids under near-solar oxygen fugacities. In igneous inclusions, the seeming paradox of high-valence spinels coexisting with low-valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low-pressure evaporation or by equilibration of spinel with relict Ti^(+4)-rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ^(25)Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ^(25)Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ^(25)Mg data are most simply explained by the low-pressure evaporation model, but this model has difficulty explaining the high Ti^(+4) concentrations in spinel

    Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Get PDF
    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid inclusions of +/- 90 0/00(2 sigma) for delta D, and +/- 29 0/00 (2 sigma) for delta O-18. On the other hand, the reproducibility of Delta O-17 is plus or minus 8 /00 (2 sigma ) because the observed variations of isotope ratios follow a mass dependent fractionation law. Variations of delta D of the aqueous fluids range over sog,a 330(90; 2 sigma ) to +1200(90) 0/00 for Monahans and delta 300(96) 0/00 to +90(98)0/00 for Zag. Delta O-17 of aqueous fluids range over delta 16(22) 0/00 to +18(10) 0/00 for Monahans and +3(10) 0/00 to +27(11) 0/00 for Zag. These variations are larger than the reproducibility of standard analyses and suggest that isotope equilibria were under way in the fluids before trapping into halite. The mean values of delta D and Delta O-17 are +290 0/00 and +9 0/00, respectively. The mean values and the variations of these fluids are different from the representative values of ordinary chondrites, verifying our working hypothesis that the fluid inclusion-bearing halites were not indigenous to the H chondrite parent-asteroid but rather represent exogenous material delivered onto the asteroid from a separate cryovolcanically-active body. This initial isotopic work has demonstrated the feasibility of the measurements, but also revealed sample processing and analytical shortcomings that are now being addressed. Examination of solid mineral inclusions within Monahans and Zag halite grains by confocal Raman spectroscopy at the Carnegie Geophysical Laboratory has revealed them to be metal, magnetite, forsteritic olivine (Fo.98), macromolecular carbon (MMC), pyroxenes, feldspar with Raman spectral affinity to anorthoclase and, probably, fine-grained lepidocrocite (FeO(OH)). In addition, one inclusion features aliphatic material with Raman spectral features consistent with a mixture of short-chain aliphatic compounds. We have initiated analyses of the bulk composition of the fluids within the inclusions in Zag and Monahans halites at Virginia Tech by LA ICPMS using angilent 7500ce quadrupole ICPMS and a Lambda Physik GeoLas 193 nm excimer laser ablation system. Preliminary results reveal that the inclusion aqueous fluids contain highly charged cations of Ca, Mg and Fe. The minerals and compounds discovered thus far within Monahans/Zag halites are indicative of an originating body at least partly composed of unequilibrated anhydrous materials (high Fo olivine, pyroxenes, feldspars, possibly the metal) which were subjected to aqueous alteration (the halite parent brine) and containing a light organic component (the short-chain aliphatic compounds). This material was ejected from the originating body with little or no disruption, as evidenced with the presence of fluid inclusions. An actively geysering body similar to modern Enceladus (Postberg et al., 2011) may be a reasonable analogue in this respect. Also, the originating body should have been within close proximity to the H chondrite parent in order to generate the number of halite grains seen in Monahans and Zag. Other candidates for Monahans/Zag halite parent bodie(s) may include a young Ceres with its possible liquid ocean, or Main Belt comets

    Hydrovolcanic Astromaterials in the Lab

    Get PDF
    Zag and Monahans (1998) are H chondrite regolith breccias that contain 4.5 GY old halite crystals which in turn contain abundant inclusions of aqueous fluids, solids and organics. We have previously proposed that these halites originated on a hydrovolcanically-active C class asteroid, probably Ceres, or a trans-neptunian object (TNO - or P- or D-class asteroid) injected into the inner solar system during giant planet migration. We have begun a detailed analysis of organics and other solids trapped within the halite, which we hypothesize sample the mantle of the halite parent object, and are examining a halite-bearing C1 chondrite clast also found in Zag, which is similar to the solids in the halite. These investigations will reveal the water-rock interactions on the hydrovolcanically-active parent world

    C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12

    Get PDF
    The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to efficiently utilize the C1 compounds methanol and formaldehyde as auxiliary substrate. The hps and phi genes of Bacillus brevis, encoding two key steps of the ribulose monophosphate (RuMP) pathway, were introduced to construct a pathway for the metabolism of the toxic methanol oxidation intermediate formaldehyde. This approach resulted in a remarkably increased biomass yield on the primary substrate glucose when cultured in C-limited chemostats fed with a mixture of glucose and formaldehyde. With increasing relative formaldehyde feed concentrations, the biomass yield increased from 35% (C-mol biomass/C-mol glucose) without formaldehyde to 91% at 60% relative formaldehyde concentration. The RuMP-pathway expressing strain was also capable of growing to higher relative formaldehyde concentrations than the control strain. The presence of an endogenous methanol oxidizing enzyme activity in P. putida S12 allowed the replacement of formaldehyde with the less toxic methanol, resulting in an 84% (C-mol/C-mol) biomass yield. Thus, by introducing two enzymes of the RuMP pathway, co-utilization of the cheap and renewable substrate methanol was achieved, making an important contribution to the efficient use of P. putida S12 as a bioconversion platform host

    Evolution of oxygen isotopic composition in the inner solar nebula

    Full text link
    Changes in the chemical and isotopic composition of the solar nebula with time are reflected in the properties of different constituents that are preserved in chondritic meteorites. CR carbonaceous chondrites are among the most primitive of all chondrite types and must have preserved solar nebula records largely unchanged. We have analyzed the oxygen and magnesium isotopes in a range of the CR constituents of different formation temperatures and ages, including refractory inclusions and chondrules of various types. The results provide new constraints on the time variation of the oxygen isotopic composition of the inner (<5 AU) solar nebula - the region where refractory inclusions and chondrules most likely formed. A chronology based on the decay of short-lived 26Al (t1/2 ~ 0.73 Ma) indicates that the inner solar nebula gas was 16O-rich when refractory inclusions formed, but less than 0.8 Ma later, gas in the inner solar nebula became 16O-poor and this state persisted at least until CR chondrules formed ~1-2 Myr later. We suggest that the inner solar nebula became 16O-poor because meter-size icy bodies, which were enriched in 17,18O due to isotopic self-shielding during the ultraviolet photo dissociation of CO in the protosolar molecular cloud or protoplanetary disk, agglomerated outside the snowline, drifted rapidly towards the Sun, and evaporated at the snowline. This led to significant enrichment in 16O-depleted water, which then spread through the inner solar system. Astronomical studies of the spatial and/or temporal variations of water abundance in protoplanetary disks may clarify these processes.Comment: 27 pages, 5 figure

    Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    Get PDF
    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion-solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ^4He in a Genesis collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 × 10^(14) cm^(–2). The shape of the solar wind 4He depth profile is consistent with TRIM simulations using the observed ^4He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles

    An oxygen isotope study of Wark–Lovering rims on type A CAIs in primitive carbonaceous chondrites

    Get PDF
    Calcium–aluminium-rich Inclusions(CAIs) and the thin Wark–Lovering (WL) rims of minerals surrounding them offer a record of the nature of changing conditions during the earliest stages of Solar System formation. Considerable heterogeneity in the gas composition in the immediate vicinity of the proto-Sun had previously been inferred from oxygen isotopic variations in the WL rim of a CAI from Allende (Simon et al., 2011). However, high precision and high spatial resolution oxygen isotope measurements presented in this study show that WL rim and pristine core minerals of individual CAIs from meteorites that had experienced only low degrees of alteration or low grade metamorphism (one from Léoville (reduced CV3), two in QUE 99177 (CR3.0) and two in ALHA 77307 (CO3.0)) are uniformly 16O-rich. This indicates that the previously observed variations are the result of secondary processes, most likely on the asteroid parent body, and that there were no temporal or spatial variations in oxygen isotopic composition during CAI and WL rim formation. Such homogeneity across three groups of carbonaceous chondrites lends further support for a common origin for the CAIs in all chondrites. 16O-poor oxygen reservoirs such as those associated with chondrule formation, were probably generated by UV photo-dissociation involving self-shielding mechanisms and must have occurred elsewhere in outer regions of the solar accretion disk

    Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    Get PDF
    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels
    corecore