139 research outputs found

    Evaluation of a Phosphate Management Protocol to Achieve Optimum Serum Phosphate Levels in Hemodialysis Patients

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/10512276 Copyright National Kidney Foundation, Inc. DOI: 10.1053/j.jrn.2008.05.003To evaluate the effectiveness of a protocol designed to optimize serum phosphate levels in patients undergoing regular hemodialysis (HD).Peer reviewe

    Eating Disorder Prevention: Current Evidence-Base and Future Directions

    Get PDF
    Objective This narrative review sought to (a) characterize prevention programs that have produced reliable, reproducible, and clinically meaningful effects in efficacy trials, (b) discuss effectiveness trials that have tested whether prevention programs produce intervention effects under ecologically valid real-world conditions, (c) discuss dissemination efforts and research on dissemination, and (d) offer suggestions regarding directions for future research in this field. Conclusion A literature revealed that 6 prevention programs have produced significant reductions in eating disorder symptoms through at least 6-month follow-up and that 2 have significantly reduced future eating disorder onset. Effectiveness trials indicate that 2 prevention programs have produced effects under ecologically valid conditions that are only slightly attenuated. Although there have been few dissemination efforts, evidence suggests that a community participatory approach is most effective. Lastly, it would be useful to develop programs that produce larger and more persistent reductions in eating disorder symptoms and eating disorder onset, focus more on effectiveness trials that confirm that prevention programs produce clinically meaningful effects under real-world conditions, conduct meditational, mechanisms of action, and moderator research that provides stronger support for the intervention theory of prevention programs, and investigate the optimal methods of disseminating and implementing evidence-based prevention programs

    Pilot test of a novel food response and attention training treatment for obesity: Brain imaging data suggest actions shape valuation.

    Get PDF
    PublishedJournal ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Elevated brain reward and attention region response, and weaker inhibitory region response to high-calorie food images have been found to predict future weight gain. These findings suggest that an intervention that reduces reward and attention region response and increases inhibitory control region response to such foods might reduce overeating. We conducted a randomized pilot experiment that tested the hypothesis that a multi-faceted food response and attention training with personalized high- and low-calorie food images would produce changes in behavioral and neural responses to food images and body fat compared to a control training with non-food images among community-recruited overweight/obese adults. Compared to changes observed in controls, completing the intervention was associated with significant reductions in reward and attention region response to high-calorie food images (Mean Cohen's d = 1.54), behavioral evidence of learning, reductions in palatability ratings and monetary valuation of high-calorie foods (p = 0.009, d's = 0.92), and greater body fat loss over a 4-week period (p = 0.009, d = 0.90), though body fat effects were not significant by 6-month follow-up. Results suggest that this multifaceted response and attention training intervention was associated with reduced reward and attention region responsivity to food cues, and a reduction in body fat. Because this implicit training treatment is both easy and inexpensive to deliver, and does not require top-down executive control that is necessary for negative energy balance obesity treatment, it may prove useful in treating obesity if future studies can determine how to create more enduring effects.National Institutes of Health grant DK-080760 supported this study. The National Institutes of Health had no role in the study design, collection, interpretation of the data, writing the manuscript, or the decision to submit the paper for publication. The authors thank the Lewis Center for Neuroimaging at the University of Oregon for their assistance with the fMRI scans

    Reward Region Responsivity Predicts Future Weight Gain and Moderating Effects of the TaqIA Allele

    Get PDF
    Because no large prospective study has investigated neural vulnerability factors that predict future weight gain, we tested whether neural response to receipt and anticipated receipt of palatable food and monetary reward predicted body fat gain over a 3-year follow-up in healthy-weight adolescent humans and whether the TaqIA polymorphism moderates these relations. A total of 153 adolescents completed fMRI paradigms assessing response to these events; body fat was assessed annually over follow-up. Elevated orbitofrontal cortex response to cues signaling impending milkshake receipt predicted future body fat gain (r = 0.32), which is a novel finding that provides support for the incentive sensitization theory of obesity. Neural response to receipt and anticipated receipt of monetary reward did not predict body fat gain, which has not been tested previously. Replicating an earlier finding (Stice et al., 2008a), elevated caudate response to milkshake receipt predicted body fat gain for adolescents with a genetic propensity for greater dopamine signaling by virtue of possessing the TaqIA A2/A2 allele, but lower caudate response predicted body fat gain for adolescents with a genetic propensity for less dopamine signaling by virtue of possessing a TaqIA A1 allele, though this interaction was only marginal [p-value <0.05 corrected using voxel-level familywise error rate (pFWE) = 0.06]. Parental obesity, which correlated with TaqIA allele status (odds ratio = 2.7), similarly moderated the relation of caudate response to milkshake receipt to future body fat gain, which is another novel finding. The former interaction implies that too much or too little dopamine signaling and reward region responsivity increases risk for overeating, suggesting qualitatively distinct reward surfeit and reward deficit pathways to obesity

    Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    Get PDF
    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli.ClinicalTrials.gov NCT00626080

    A Critical Perspective on Moral Neuroscience

    Get PDF
    In this paper, we highlight several historical developments in the neuroscience of ethics as well as recent advances that forecast the experimental research to come. We argue, in particular, that our understanding of the moral brain will benefit from the further use of a formal, mathematical approach to the construction and testing of alternative theories, such as that found in the field of neuroeconomics. The use of economic modeling to understand the psychological processes underlying distributional preferences and charitable giving is reviewed to illustrate this potential. We also consider some obstacles to such an approach, notably the challenge of capturing substantive moral values within a mathematical model

    Attentional Processing of Food Cues in Overweight and Obese Individuals

    Get PDF
    The incentive sensitization model of obesity hypothesizes that obese individuals in the western world have acquired an enhanced attention bias to food cues, because of the overwhelming exposure to food. This article gives an overview of recent studies regarding attention to food and obesity. In general, an interesting approach-avoidance pattern in food-related attention has been found in overweight/obese individuals in a number of studies. However, it should be noted that study results are contradictory. This might be due to methodological issues, such as the choice of attention measurements, possibly tapping different underlying components of information processing. Although attention research is challenging, researchers are encouraged to further explore important issues, such as the exact circumstances in which obese persons demonstrate enhanced attention to food, the directional relationship between food-related attention bias, overeating and weight gain, and the underlying involvement of the reward system. Knowledge on these issues could help improve treatment programs

    Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding

    Get PDF
    Objectives Roux-en-Y gastric bypass (RYGB) has greater efficacy for weight loss in obese patients than gastric banding (BAND) surgery. We hypothesise that this may result from different effects on food hedonics via physiological changes secondary to distinct gut anatomy manipulations. Design We used functional MRI, eating behaviour and hormonal phenotyping to compare body mass index (BMI)-matched unoperated controls and patients after RYGB and BAND surgery for obesity. Results Obese patients after RYGB had lower brain-hedonic responses to food than patients after BAND surgery. RYGB patients had lower activation than BAND patients in brain reward systems, particularly to high-calorie foods, including the orbitofrontal cortex, amygdala, caudate nucleus, nucleus accumbens and hippocampus. This was associated with lower palatability and appeal of high-calorie foods and healthier eating behaviour, including less fat intake, in RYGB compared with BAND patients and/or BMI-matched unoperated controls. These differences were not explicable by differences in hunger or psychological traits between the surgical groups, but anorexigenic plasma gut hormones (GLP-1 and PYY), plasma bile acids and symptoms of dumping syndrome were increased in RYGB patients. Conclusions The identification of these differences in food hedonic responses as a result of altered gut anatomy/physiology provides a novel explanation for the more favourable long-term weight loss seen after RYGB than after BAND surgery, highlighting the importance of the gut–brain axis in the control of reward-based eating behaviour

    Adiposity is Associated with Regional Cortical Thinning

    Get PDF
    BACKGROUND: Although obesity is associated with structural changes in brain grey matter, findings have been inconsistent and the precise nature of these changes is unclear. Inconsistencies may partly be due to the use of different volumetric morphometry methods, and the inclusion of participants with comorbidities that exert independent effects on brain structure. The latter concern is particularly critical when sample sizes are modest. The purpose of the current study was to examine the relationship between cortical grey matter and body mass index (BMI), in healthy participants, excluding confounding comorbidities and using a large sample size. SUBJECTS: A total of 202 self-reported healthy volunteers were studied using surface-based morphometry, which permits the measurement of cortical thickness, surface area and cortical folding, independent of each other. RESULTS: Although increasing BMI was not associated with global cortical changes, a more precise, region-based analysis revealed significant thinning of the cortex in two areas: left lateral occipital cortex (LOC) and right ventromedial prefrontal cortex (vmPFC). An analogous region-based analysis failed to find an association between BMI and regional surface area or folding. Participants' age was also found to be negatively associated with cortical thickness of several brain regions; however, there was no overlap between the age- and BMI-related effects on cortical thinning. CONCLUSIONS: Our data suggest that the key effect of increasing BMI on cortical grey matter is a focal thinning in the left LOC and right vmPFC. Consistent implications of the latter region in reward valuation, and goal control of decision and action suggest a possible shift in these processes with increasing BMI.We thank all the participants and the staff of the Wolfson Brain Imaging Centre. This work was supported by the Bernard Wolfe Health Neuroscience Fund (NM, HZ, ISF, PCF), the Wellcome Trust (RGAG/144 to N.M, RGAG/188 to ISF, RNAG/259 to PCF) and the Medical Research Council (G0701497 to KDE).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ijo.2016.42
    • …
    corecore