22 research outputs found

    A note on the cracked plates reinforced by a line stiffener

    Get PDF
    The problem of a cracked plate reinforced by a line stiffener is reconsidered. The original solution of this problem was given in the literature. Also, a variation of the problem with debonding between the plate and the stiffener near the cracked region was reported in the literature. However, the special case of the problem in which the crack tip terminates at the stiffener does not appear to have been studied. In practice, the solution may be necessary in order to assess the crack arrest effectiveness of the stiffener. The problem of a stiffened plate with a crack is reformulated, the asymptotic stress state near the crack tip terminating at the stiffener is examined, and numerical results are given for various stiffness constants

    A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack

    Get PDF
    A cylindrical shell having a very stiff and plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flaw which may be modeled as a part through surface crack or a through crack. The effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter is studied. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the Mode 1 stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part through crack problem is treated by using a line spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equations of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem

    The crack problem in a reinforced cylindrical shell

    Get PDF
    A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example

    A cylindrical shell with an arbitrarily oriented crack

    Get PDF
    The general problem of a shallow shell with constant curvatures is considered. It is assumed that the shell contains an arbitrarily oriented through crack and the material is specially orthotropic. The nonsymmetric problem is solved for arbitrary self equilibrating crack surface tractions, which, added to an appropriate solution for an uncracked shell, would give the result for a cracked shell under most general loading conditions. The problem is reduced to a system of five singular integral equations in a set of unknown functions representing relative displacements and rotations on the crack surfaces. The stress state around the crack tip is asymptotically analyzed and it is shown that the results are identical to those obtained from the two dimensional in plane and antiplane elasticity solutions. The numerical results are given for a cylindrical shell containing an arbitrarily oriented through crack. Some sample results showing the effect of the Poisson's ratio and the material orthotropy are also presented

    The crack problem in a reinforced cylindrical shell

    Get PDF
    In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example

    SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease?

    Get PDF

    The Structural and Electrical Study of Lu-Doped YBCO System

    No full text
    WOS: 000323906600099We have prepared a series of bulk superconducting samples with the nominal composition of Y1-xLuxBa2 Cu3Oy (where x = 0.0, 0.05, 0.1, 0.2 and 0.3) by the conventional solid-state reaction method. The samples were characterized structurally by means of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry. The electrical transport properties of the samples were analyzed in the temperature range between 20-140 K under magnetic fields up to 2 T. The superconducting transition temperature, T-c, and activation energy, U-0, were found to decrease with Lu-doping and with increase in applied magnetic field
    corecore