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A PRESSURIZED CYLINDRICAL SHELL WITH A
FIXED END WHICH CONTAINS AN AXIAL
PART-THROUGH OR THROUGH CRACK

by
0.S. Yahsi and F. Erdogan
Lehigh University, Bethlehem, PA

ABSTRACT

In this paper a cylindrical shell having a very stiff end plate or
a flange is considered. It is assumed that near the end the cylinder
contains an axial flaw which may be modeled as a part-through surface
crack or a through crack. The primary objective is to study the effect
of the end constraining on the stress intensity factor which is the
main fracture mechanics parameter. The applied loads acting on the
cylinder are assumed to be axisymmetric. Thus the crack problem under
consideration is symmetric with respect to the plane of the crack and
consequently only the Mode | stress intensity factors are nonzero. With
this limitation, the general perturbation problem for a cylinder with
a built-in end containing an axial crack is considered, Reissner's
shell theory is used to formulate the problem. The part-through crack
problem is treated by using a line-spring model. In the case of a
crack tip terminating at the Tixed end it is shown that the integral
equations of the shell problem has the same generalized Cauchy kernel
as the corresponding plane stress elasticity problem. Even though the
problem is formulated for a general surface crack profile and arbitrary
crack surface tractions, the numerical results are obtained only for a
semi-elliptic parc-through axial crack located at the inside or outside
surface of the cylinder and for internal pressure acting on the cylinder.
The stress intensity factors are calculated and presented for a rela-
tively wide range of dimensionless length parameters of the problem.

1. Introduction

In recent past, solutions of crack problems in shells proved to be
quite useful in studying fatigue and fracture of such important structural
components as pipes, pressurized containers, and a great variety of
other thin-walled structural elements (see, for example, [1] for applica-
tions to the fatigue crack propagation of part-through cracks and to the
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estimation of net-ligament rupture loads in pipelines). The existing
solutions which are based on either the classical shaliow shell theory
or a Reissner type transverse shear theory have all been given for
"infinite' shells in the sense that the crack is assumed to be located
sufficiently far away from the boundaries and all other sources of
stress disturbance so that all interantion effects may be neglected.
The differences betwzen the asymptotic crack tip stress i\ields given
by the classical theory and by a higher order theory have now been well-
documented and will not be discussed in this paper (e.g., [2]), except
to note that, particularly in the presence of local bending, the trans-
verse shear theory appears to have clear advantages. The problems of
a cylindrical shell with an axial crack, that with a circumferential
crack and a spherical shell with a meridional crack have respectively
been considered in [3], [4] and [5] by using Reissner's shell theory.
The crack problem of toroidal shells with a pbsitive or negative curva=-
ture ratio, inciuding the effects of material orthotropy has been
studied in [6]. The problem of an arbitrarily oriented crack in a
cylindrical shell under general loading conditions is considered in [7].
The solutions given in [3]-[7] are all for a through crack.

The problem of surface cracks in shells is inherently - hree-

dimensional elasticity problem and appears to be analytically intractable.

There are, however, some numerical solutions based on the technique of
finite elements [8], [9], or boundary integral equations [10]. Recently,
there has also been some applications of the line spring model developed
.in [11] for plates to surface crack problems in shells (see [12] for the
results obtained by the transverse shear and [13] by the classical

shell theory). Comparison of the results given in [12] with the finite
element solution given in [9] shows that one could obtain surprisingly
good results for the stress intensity factors along the border of a
part-through crack in a shell by using the line spring model with a
higher order shell theory and with reasonably accurate compliance func-
tions for the corresponding plane strain edge crack problem under mem-
brane and bending loads.
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The primary objective of this paper iy to study the influence of
a stiffened end on the stress intensity factors in a pressurized cylin-
drical shell containing an axial through or a part-through crack near
the end. Such problems may arise in pipes and cylindrical containers
having flanges or end plates the bending and membrane stitfnesses of
which are very high in comparison with thuse of the shell itself (e.g.,
heat exchanger tubing neidr the end plates). Thus, in formulating the
problem it may be assumed that the end of the shell is ''fixed", that
is all components of the displacement and the rotation vectors are zero.
The part-through crack problem is solved only for a semi-elliptic inter-
nal or external surface crack. However, the technique is quite general
and can accommodate any crack profile within the confines of basic
limitations of the line spring model. As in the corresponding plane
elasticity problems, in the shell problem too the case of the crack tip
touching the end stiffener requires special consideration with regard
to the analysis of the crack tip singularity as well as to the method
of solution.

2. The Basic Shell Equations

Roferring to Appendix A for normalized and dimensionless quantities
and to [3]-[5] for details of derivations, in terms of a stress function
¢, displacement component w and the auxiliary functions ¢ and Q, the
basic equilibrium equations of a cylindrical shell may be expressed

as follows:

A, 2 5
] W
T - (T) 'Wz'= o , (1)
2
Vhw + A2A2(1-c72) g—yiﬁm A*(1-kv2) 2 (2)
KVZ\P'IP"W=0, ) (3)
'-‘-i'-z-f-‘i)- V20 - Q=0 , (4)



where q(x,y) is the transverse shear }anding and ¥ and Q are related
to rotations as follows [4]:

L, 50-) 29 0 _ k(l-y) 20
Bx " 3x ¥ 72 y By 3y 2 ax (5)

The shell and crack dimensions and the notation are described in Fig. 1.

The normalized membrane, moment and transverse shear resultants are
defined by

L 92 92 8%
Mox = a0 Ny T e Ny T By (6)

28, 28, 38, 98
My 'W(—*"’ay)’“y hA‘*(" x| By ! ?

Moy I PO e (7)
v s Mg oy ML (8)

X  9x X Y oy y

To solve the problem, one may first consider a cylindrical ghell
without a crack which is fixed at Xy = 0 plane and which is subjected
to the given set of external loads. Since the proklem is linear, the
solution of the cracked shell problem may then be obtained by adding
to this uncracked shell results a perturbation solution obtained from
the cracked shell with a fixed end by using the equal and opposite of
the stress and moment resultants from the first solution as the crack
surface tractions. Thus, in the main crack problem one may assume
that the transverse shear load q (such as pressure) is zero and the
crack surface tractions are statically self-equilibrating.

3. Solution of the Differential Equations

By eliminating ¢ and by assuming that q = 0, from (1) and (2)
we find

e vt T
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2
Tt + AF(1-kv2) =0 (9)

In the present study the primary interest Is in the pressurized cylinder
problem. Hence, In formulating the problem it will be assumed that the
plane of the crack is a plane of symmetry with respect to loading as
well as geometry. Therefore, for the shallow shell under consideration
the solution of (9) may be expressed as

-] (-]

wlx,y) = 5';[ £ (xy0)e™ Ve + %J 7,(y,8)cosex d8 . (10)
) 0

Assuming the solution of the ordinary differential equations resulting
from (10) and (9) of the form

fy(x,0) = Rla,me™ f,ly,8) = s(g,n)e™ (1)
the characteristic equations giving m and n may be obtained as follows:

m8-ha2mb + 6a“m“-(&a2+xx?)u“m2 + a“[a“+k?(l+nu2)] =0 , (12)
n8-(432+m;\';)n6 + (66“+kl?52+>\‘f)n“ - 4g6n2 4+ g8 = 0 , (13)

Note that, ordered properly, the roots of (12) and (13) have the g
following property "

Re(mj)<0,mj+“=-mj ’j=|,...,’0 o (“0

Re(nj) <0, AP P J=1,...,0 . (15)

If we now observe that {or the particular shell under consideration

(Fig. 1) -=<y<0, because of symmetry it is sufficient to consider the
problem for x>0 only, and the external loads are local and are statically
self-equilibrating (consequently all field quantities vanish as x>,
y+-=), by letting R(a,mj)=Rj(a) and S(B,nj =Sj(6), the functions f, and
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fz vanishing respectively at x=w and ym=-» may be written as

m, X n.y
Frlxa) = 2 Ro(aed | f.0y,8) = & s.(8ed | (16)
' jup 2 j=5 4

vhere R}, (j=1,...,4) and SJ, (j=5,...,8) are unknown functicns.
Similarly, by expressing

=] o«

b (x,y) = E%-j g‘(x,a)e-iayda + %-j gz(y,B)cosBx ds , (17)
oo 0

after obtaining w, from the coupled equations (1) and (2) the functions
9 and g, may be obtained as
2,2
Afa? Rj(a) m,x

9) (%) = - =7 f oy’ e .%ﬂﬁ%ﬂ,(»o). ’18)

A2 g n%s.(B) n.y

g,(y,B) = p'- ? e, qan2-82, (y<0) . (19)
5 qj J J

Expressing now Q in the form

a(y) = g [ by (ol e+ 2 [ty smay a8 (20)
=% o
and assuming that
hl(xsa) = A(asr)erx o hZ(Y’B) = B(B,S)eSY ’ (21)

from (4) it can be shown that the functions h, and h, satisfying the
conditions at x=x and y=-» may be expressed as

(xa) = A (ade |, ) = <[ 4+ =2t (0exen) )
hy (x,a) =  (a)e » ry = ~[e® 4+ e O<x<=) , (22a,b

72 2,2 1
hz(Y1B) = BZ(B)e ’ 52 = "{B + m] ’ ('°°<y<0) ’ (23asb)
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where Al(a) = A(a,r]) and BZ(B) - B(B,sz) are unknown functions.

Finally, one may easily show that the remaining differential equa~-
tion (3) wiil also be satisfied and the solution will have the proper
behavior at x=w, y==x [f jt s assumed that

boxr) = 2 [ 8y (0l aw + 2 [0, (v, 8)cosx a8 (24)
y R, (a) mx 8 S, () ny
o) bue) = £ oy e T ene) = ;é;nT-e : (25)

where R,, "ﬁ, Py Sj, "j and qj are the same quantities which appear
in (18) and (19€.

The formulation given above for x>0, y<0 satisfies the conditions
at infinity and contains ten unknown functlions (Rj' Sj, A and Bz).
These functions are to be determined from the boundary conditions pre-
scribed on x=0 and y=0.

k., The Boundary Conditions

Referring to Fig. | and assuming symmetry with respect to x]-o
plane, the boundary conditions for a cylindrical shell fixed at y=0
and containing a through crack of length 2a along xl=0, -d<x2<-b may be
expressed as follows (see Appendix A for the normalized quantities)

u(x,0) = 0, v(x,0) = 0, w(x,0) = 0, sx(x,o) =0, ay(x,o) = 0, (0<x<=) ,

(26)

Ny (0s¥) = 0, M (0yy) =0, v (0,y) = 0, (==<y<0) , (27)
Nxx(+°’y) = F](Y) ’ "'d]<‘/<'b] ’ L

(28a,b)

U(09Y) =0, '°°<y<'d" "b]<\/<0 ’ J
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Mex (#0,¥) = Fyly) , =d)<y<-b, ]> (29a,b)
Bx(opy) =0, -m<y<-d], -b|<y<0 J

where dl = d/a, b] = b/a and Fi and F, are the crack surface tractions
known from the uncracked shell solution. The displacement component
w Is given by (10) and (16) arnd the quantities B.or By’ ny, Mxy’ Voo
Nxx and Mxx may easily be expressed in terms of the unknown functions
Rj' Sj, A] and 82 by substituting from the solution given in the pre-
vious sectiofi into (5)-(8). These expressions may be found in Appendix
B. The displacements u and v are determined by using the Hooke's law

and the strain displacement relations

iy = (g gt 2 e 42 s O ()= 02) (30)

where Z(xl,xz) gives the equation of the middle surface of the shell,

Observing that Z 22 = 0, A i -1/R and referring to Appendix A, It
? ?

can be shown that

oN N aN A2
3%u _ xy _ Zlyy XX 1 2%w
2 2(14v) 3y Rl v =SS+ xz-gvz-x , (31)
oV - :
Ay Nyy vax ’ (32)
from which we cbtain
Ay 2 4 2+v)a2-m? m.x-iay
u(x,y) = EL-—Q J § wmegeed- R, (a)m.e 4 da
™A 1 pj J J
o M * g (2+v)n? n.y A‘Z
+=2 | L ——d 5.(B)Be ! sinBx dB + == xw(x,y) , (33)
TA 5 qj J A
o]

r a™\
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v(x,y) 2 Xz-f f pj Rj(a)ue da OF P Q
oM (e | nyy
- ;'iz'j L -%'(Bz+vn2)5 (B)e  cospx dB, (x>0, y<0). (34)
5 QJ 3

By substituting from (33), (34), (10), (16}, (B.9) and (B.10) into

(26) and by inverting the sine and cosine transforms we find

g (2+v)n,2-82 i ¢y (249)02-m, 2

I — 5)(8) = = 7 | I or(rzmgey Ry edny da
J A B

g n,(8%+vn,2) 2 hm, 24va2

gJ_Y_J_-S (8) = -—-[ )iIWRJ(Q)GmJ da ,

w1

Z 4 mR, (a)
s;(8) = -—-J : Ejzigz— d

=00

©0

M

8S, (8) s Bm,R, (a)
Ji k(1-v) ] N
qu~| T T2 sZBZ(B) " EF'j (Kpj'l)(m ‘*ﬁ‘)

x

wm

Ck(1=v)i Im agA, (a)

b r‘z+84 da
JSJ(B) , k(1-v) 58, () = 1 4 am R, (o)
5 Kq; -1 2 2w (Kpj'l)(m ‘+3‘)
® .2
c(=y) [ FiA ()
* O [ rye+8° do .

-0

Consideration of the mixed boundary conditions (28) and (29) in
mind, we now define the following new unknown functions:

-9~

(35)

(36)

(37)

(38)

(39)

—~
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G](Y) - g%-u(+0,y) ’ GZ(Y) - é%-ﬁx(+0,v) y (=w<y<0) (40)

From (33), (B.9) and (40) it can be shown that

AZ % (14v)oaR-p b

G'(Y) = - %;‘x%’f § "'?;?r'-‘L Rj(u)ae FoY g (41)
oy mR,(a) - " -

6,(y) = - {;-[ : -&;f:T—-ae 19 gy - uilv) f a?A, (0)e™ Vda, (42)

-0 =0

From (28), (29) and (40), if we observe that Gy=0, G,=0 for -w<y<-d
-b]<y<bw by defining
b,
cj(a) - j ﬁj(Y}eiay dy , (j" ,2) , (43)

1

"

and by using the expressions (B.3), (B.6) and (8.7) it can be shown
that the homogeneous boundary conditlons (27), (41) and (42) are equiv-
alent to

R, (
g 23_41:2.. o, (k4)
1 Pj .
[ m.R.(ot) 1
z Kpj" = i [k(1-v)a + EJ N CH R (45)
4 i
I mR, (@) = - =C,(a) , (46)
4 m.R. (a) A2
Aja) = 2¢,(a) . (48)
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From (44)=-(47) one may easily solve for RJ and obtain expressions
of the form

Ry (a) = 10Q; ()€ (a) + N, (a)c, (a)]

]
-I kgl Cjk(u)t)sk(t)dt ’ (J-””°Dl’) ¢ (“9)
-d'

Substituting now from (48) and (49) into (35)-(39), the remaining
unknowns may also be expressed as follows:

-b
sj(a) -f 'kgl bjk(B,t)Gk(t)dt y (J=1,...,48) (50)
“h
=b
L)
5,(8) = | DMCOINOT (51)
-d

]

where cjk and b | are known functions. Thus, once G‘ and Gz are deter-
mined (48)-/(51) and Appendix B would give all the field quantities
needed.

5. The Integral Equations

From the derivations given in the previous section it is seen that,
in addition to the assumption G,=0=G, for -=<y<=d|,=b<y<0 used in (43)
if Gl and G2 are also assumed to satisfy the conditions

..b'

[Tomey =0, Gar,2) (52)

-d

1

Then all boundary conditions (26)-(29) except (28a) and (29a) would
be satisfied. These two conditions may now be used to determine the
unknown functions G, and G,. Thus, by substituting from equations (B.1),

-11=-
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(8,4) and (48)=(51) into (28a) and (29a), we obtain

=b
] 0 ®
2 P (t=y)a
\ Y
l—mo I jfvl [kaj (x,a)e da + fovkj (y,t,B)costdB]GJ(t)dt
)
- Fk(Y)v (k-liz)) ("d]<Y<'b') (53)

where ij and ij are very complicated but known functions. As t-+y and
for b=0 as (t,y)~0 the kernels in the integral equations (53) are expec-
ted to be unbounded. Since the singular behavior of the unknowns G'
and G2 will be dependent con the singular nature of the kernels, it is
necessary to examine the asymptotic behavior of these kernels. In (53)
the integrands of the inner integrals are bounded for all values of
their grguments, Thus, any singularities the kernels may have must be
due to the behavior of the integrands at a = 3 » and 8 = », and these
singularities may be separated by isolating the asymptotic parts of

vy, for la]+o and of Yy for B+=. This can be done in closed form by
first extracting th% asymptotic values of m (), n,(8), r (a) and s,(8)
from the chzrasturiscic equations (12), (lB{, (22b; and (23b) and then
by substituting these values into the expressions of ij and Yk.. F rom
the characteristic equations it can be shown that for large values of
la| and B we have

2

m (@) = =lal (% gy = gt ) Gl (54)
9, 9,2

0 (8) = 81 + gz - glx s ), Gms,ll8) (55)

r@) = =lo (1 + bymr = 0 ), (56)

5,(8) = 801 + oz - ++0) (57)

Tkt LIRL

T T s B
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By using (54)-(57) and by adding and subtracting the asymptotic
values of ij and ij in (53), after evaluating the singular terms of
the kernels in closed form, the integral equations (53) may finally
be expressed as follows:

~b
} 2 2
] V& 4 6v=3 160+ y b{1+y)
fd [t-y * (V1) (3-v)  t+y 3=y (t+y)“ * 3=v (t+y)’J Gl(t)dt
Y 0
+ J kyq (y,t)6, (t)dt + j (72806, (£)dt = 20F, (y)
-4 -4
"d|<y<'b] » (58)
i 246 6(1v) b)) 2
Y o2 ] ve+by=-3 1 _6(1+ T+v VA
(1-v )J [t-y + (v#1) (3-v) t4y 3=V t+y + 3=y (t+y)’] Gz(t)dt
-d]
rd il
1 kg ly,t)e(t)de + f Kyp (Y, )G, (t)dt = 2mA* % Foly)
-d; -d'
'd]<Y<'b| ’ (59)

where the kernels kij’ (i,j = 1,2) are known bounded functions. It
should be noted that the integral equations (58) and (59) must be solved
under conditions (52). .

For b,>0 the integral equations (58) and (59) have simple Cauchy-
type kernels and have a solution of the form [14]

Gk(Y) - Hk(Y)/[-(Y"'dI)(Y"'b])]& ’ "d"<y<'blv (k=192) (60)

where H] and Hz are unknown bounded functions. In this case the integral
equations may be solved numerically by using the technique described,

-13-
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for example, In [15]. On the other hand for b, = 0 (that Is, If the
crack tipy = -bI Is extended to the fixed end), it Is seen that the
kernels have singular term$ in addition to (t--y)'l which become unbounded
as t»0 and y-+0 together. ‘the singular parts of the kernels shown separ=-
ately in (58) and (59) are typically the generalized Cauchy kernels.
Because of these kernels the solution no longer has the square-root
singularity given by (60). From (58) and (59) we first observe that

the dominant kernels in the two equations are identical. Consequently,
the singular behavior of Gl and G2 (or u and Bx) at the crack tips would
be identical. This, of course, is the physically expected result. Next,
to obtain the singuiar behavior of the solution we express GI and Gz as

Gk<Y) - Pk(Y)/['YY(Y‘*d])w] ’ O<R3(Yvw)<'r (k'],Z), (-"d|<y<o)’ (6])

where the functions P, and P2 are bounded and unknown and the unknown con-
stants vy and w are determined by substituting from (61) into (58) and

(59) and by using the function-theoretic method (see, for example,

[156]). Thus, from (58), (59) and (61) the characteristic equations giv=
ing vy and w may be obtained as follows:

v2+6v=-3 2(1+v) - )
COSW'Y + (\)_'_1)(3_\))' + 3_\) Y ('Y+2) =0 Y (62) i

cotmw = 0 . (63)

The acceptable root of (63) is 1/2 which is the expected power of
singularity for the crack tip y=-djembedded in a homogeneous medium.
It may be shown that (62) is identical to the plane stress version of
the characteristic equation for the corresponding plane elasticity prob-
lem [16]. For example, for v=0,3 it is found that y = 0.24165 is the
acceptable root. In this special case too the system of integral
equations (58) and (59) may again be solved numerically by following the
technique described in [15].

1l



6. Stress Intensity Factors

After solving the integral equations the asymptotic behavior of
the stress state around the crack tips may be examined by using the
expressibns given in Appendix B. For the embedded crack (i.e., for b>0)
the problem is the same as in an infinite shell which has been discussed
previously in detall elsewhere (see, [3]-[6]). For the crack tip at the
fixed end b=0 the asymptotic behavior of the stress state would be
identical to the plane stress problem considered in [16] and only the
related stress intensity factor needs to be given. One should note that
as shown in [3]-[6], unlike the asymptotic results obtained from the
classical theory, the membrane and bending resultants given by the
Reissner's theory have identical behavior around the crack tips and
this behavior is in turn identical to that given by the plane elasticity
theory. Thus, to describe the stress state around the crack tips all
one needs to do is to determine a set of thickness~dependent stress
intensity factors.

The in-plane components of the stress state in the shell are given

by
N, . (x,,x,)
_m b m - ij 12 ;
i
b le3
cij(xl’XZ’XB) = —33—-M3j(x],x2), (i,j=1,2), (64)

where superscripts m and b refer to membrane and bending stresses. In ;
the symmetric problem under consideration only the Mode | stress state

exists around the crack tips. For the embedded crack the corresponding
stress intensity factors at the crack tips x, = -d and x, = -b (Fig. 1)
may, therefore, be defined as follows:

x2+vb

k‘(md,x3) = liz-d -2(x,+d cl](o,xz,xB) . (65§,b)
2

-15-
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These stress intensity factors may be ca'culated from the asymptotic

analysis of the stresses around the crack tips. However, they may

also be calculated directly from the integral equations (58) and (59)

without lengthy asymptotic analysis, To do this we first observe that

the left hand sides of (58) and (59) give the expressions for N,

and M . on x=0 outside as well as Inside the crack (-d'<y<-b'), and )
only the dominant kernels contriltute to the stress singularity. Thus

referring to (64) and (65), after some calculations it may easily be

shown that

E = X3
k‘(-b,x3) =~z Va [Hl('bl) + 1;-H2 (-b,)] ’

X
k]('d’x3) = ‘g‘vfa_ [Hl('dl) + ";3" Hz('d')J ’ (66a)b)

where H, and H, are related to G) and G, through (60) and are the
main zalculated results.

For b = 0 the angular distribution of stresses and the stress
intensity factors will depend on the dominant parts of the integral
equations (58) and (59). Since the dominant kernels obtained for the
shell problem are identical to the plane elasticity problem, (aside

[ —————

from the magnitude of the stress intensity factors) the analysis and
the results would also be the same. The details of the asymptotic
analysis may be found in [16]. In this problem it is particularly

e

important to note that the stress intensity factor k1 is a measure of :
the amplitude of all in-plane stresses T (i,j=1,2) around the crack (
tip y=0, there is no ''cleavage' stress o, in the ''second medium' 1
(which is rigid) in terms of which k] may be defined, stress state

around the crack tip may be calculated in terms of k' and the angular

distributions given in [16], and k) may easily be defined in terms of

the crack surface displacement (au+x3Bx). Similar to [16], from

the dominant part of the integral equations the stress intensity factor

at the crack tip xi=-b=0 may be obtained as

-16~
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. . LE[2-v-y(1-v)] X3
k) (0,%5) THT(3-wTsTny L1(0) + 57 Py (0)] (67)
After the determination of the thickness-dependent stress intensity fac-
tor kl the stress state near the crack tip xz-o may be obtained from

(0,x

)
—-——-3—f RON (68)

Uij(rfe'XB) 2

where (r,8) are the polar coordinates in (xl,x ) plane and the functions
fiJ may be found in [16] ). In this case at the embedded crack tip
xz--d the relation between the stress intensity factor and the crack
surface displacement leading to (66b), namely

, d
ky(=dyx;) = 3 L VZ(x,+d) Y [up(+#0,%)) + x38,,(+0,x,)) ] (69)
%2

is still valid and, therefore, referring to (61) kl may be calculated
from

Ky (=d,x,) = ;%;- /3 [Py (-d)) + 2Py (-d)] . (70)

7. The Part-Through Crack Problem

In this paper the part-through crack problem described in Fig. 1
will be treated by using the line-spring model. The particular version
of the model used with the Reissner's plate or shell theory is discussed
in [17] and [12] in detail. Since for the problem under consideration
the method to be followed and the compliance coefficients to be used
in the line spring mode! would be identical to those given in [17] and
[12], only the results and no analytical details will be discussed in
this paper.

) the distributions given for the greatest stiffness ratio in [16] may
be used as an approximation to the rigid end problem.
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in the symmetrically loaded shell having a symmetrically oriented
crack shown in Fig. 1, it is clear that only the Mode | stress inten-
sity factor would be nonzero along the crack front. At a location y
along the crack front this stress intensity factor is calculated from

[12]
kyty) = vh [oly)g (£) + mly)g, ()] , & = L/h . (71)

The functions o and m are defined by

6M(x

N(x,)
Xz , m(Y) - w7

q(y) - m =

N{ay) 2) 6M(ay)
- - = (72)

where N and M are the membrane and bending resultants which replace
the net ligament under the surface crack and L is the crack depth
(Fig. 1). The functions g, and g, are essentially the shape factors
for the plane strain problem of a strip of thickness h which contains
an edge crack of depth L and is subjected to uniform tension or cylin-
drical bending. These shape factors are given by

g, (€) = V& (1.1216 + 6.5200£2 - 12.3877c + 89.0554E6
- 188.6080£8 + 207.3870£10- 32.0524£12) |
g, (£) = vE (1.1202 - 1.8872¢ + 18.0143c2 - 87.3851¢3
+ 241.9124e" - 319.9402£5 + 168.010586) . (73a,b)

To determine o and m the integral equations (58) and (59) are
modified to incorporate the effect of the net ligament. This is done
by replacing F' and Fz (which are equal and opposite to Nxx and Mxx

calculated from the uncracked shell solution) as follows:.

o)+ F ) + 2 ) s r ) B (74)



ORIGINAL PACGE 1
OF POOI QUALITY

By using also the linear dependence between the palrs (o,m) and (u,Bx)
[12], the Integral equations are then modified as

y y b,
-ytt(y)j G, (t)dt + ytb(y)[ G, (t)dt + lerI kg (y,t)G, (t)dt
~d, d, “d,
-b'
+%j zmﬂwﬂchwt-FW) -d <y<=b, , (75)
-dl
) y y ) b,
+th(y)f Gy ()4t = vy, )] y(e)ae + BT) [ ktritds ey
-d ~d) -4
-b'
'ﬁr’?ﬁ“’[ z ky (y t)G (t)dt = F,(y), -d;<y<=b, , (76)
~d

where ks is the generalized Cauchy kernel given in (58) and (59), the
upper (i.e., =) the lower (i.e., +) signs are to be used for the outer
and the inner surface crack, respectively.
After solving (75) and (76) for G, and G,, u and B , and then o
and m are evaluated as follows:
Y Y
ato) = [ 6y (0ae, o) = [ gylee (77)

-d] -d'

oly) = E[y,,u+ v, 8.1, mly) = 6E[y, u+ v, BT, (78)

where the + and - signs are to be used for the outer and the inner
crack, respectively. The functions Yi'(y)’ (i,j=t,b) are known in terms
of g, and g, (see [12] or [17])

e



8, The Results for a Pressurized Cylinder

As an example we consider a cyiinder which is fixed in one end
and is internally pressurized (Fig. 1). The cylinder is assumed to be
sufficiently long so that the perturbation field of the crack interacts
with one end only. The crack problem is solved by using the equal and
opposite of the stress resultants N" and M" obtained in Appendix €
from the uncracked shell solution as the crack surface tractions in
the integral equations (58) and (59) or (75) and (76). In the through
crack problem, as seen from (66), the stress intensity factors are
linearly dependent on the thickness coordinate Xq Thus, one may dis~
tinguish a 'membrane' and a 'bendlng'' component of the stress inten-
sity factor. We could therefore define the following normalized
stress jintensity factors:

kyla;,0) ky(a;,h/2) =k, (a, ,0)
k (a-) W ———, kb Qi) = : ’ (793’b)
U (pRi/h)Va (p,R;/h)Va

where o = =b, a, = -d identify the crack tip, ky is defined by (65) :
and is calculated from (66), P, |s the internal pressure, 2a is the i
crack length, and Ri is the inner radius and h the thickness of the L

cylinder. The normaiizing stress intensity factor (pORi/h)/S corresponds "

to the value in a flat plate under a uniform membrane stress (poRi/h)
and having the same size c¢rack as the shell.

Tables 1 and 2 show the calculated results obtained for certain i
values of the dimensionless length parameters R/h, a/h and c/a of the

problem, where ¢ defines the crack location. The tables clearly show
the influence of the end stiffener in reducing the stress intensity\
factors. As c increases the stress intensity factors at both ends
approach the infinite cylinder values. The effect of the end stiffener
and the curvature on the stress intensity factors can be seen somewhat
better in Fig. 2 where some limited information is displayed. The
figure shows the membrane component of the normalized stress intensity »
factor defined by (79a) as a function of the crack location ¢ for a

=20~
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fixed crack length a=3h and for various curvature ratios R/h. It is
important agafin to observe that as c+a, or as the crack tip approaches
the end stiffener, generally the stress intensity factors decrease and,
furthermore, km at x,=-b tends to zero. This may easily be explained
by noting that for c=a there Is a change in the nature of stress singu-
larity, 1.e.,

k,(-b)
op; & for c>a or b>0 , (80)
4 v2r

k(0 K (0)rtY
a%* =
g v2r

o for c=a or b=0 , (81)

where r is a small distance from the crack tip and kl('b) and k'(o) are
finite constants. Thus, from (80) and (81) it is seen that the stress
intensity factor based on the definition of the conventional square
root singularity becomes

lim ky(-b) & 1im VIF o, = Vim k,(o)r’*"Y -0 . (82)
b0 r+0 o
b0 ;

A second somewhat curious observation one may make from Fig. 2
is that for smaller values of R/h there seems to be a slight ''overshoot'
in the stress intensity factor km(-d) before it tends to the infinite
cylinder value. The explanation for this may be found in the uncracked b
cylinder solution which indicates that in the perturbation region the
end stiffener may cause a slight bulging of the cylinder in radial
direction.
In Tables 1 and 2 the column c¢/a = | corresponds to the crack ter-
minating at the end stiffener, (i.e., b=0). In this case the stress
intensity factor k; at x,=0 is calculated from (67). Despite relatively
large magnitudes of these stress intensity factors, as indicated above,
since the stress singularity at this point is a weaker singularity
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(1.e., v<%, see (68)), there is actually a reduction in the amplitude
of the stress field as b-+0.

The results obtained from the part-through crack solution are given
in Tables 3-10. In all these calculations it is assumed that the crack
has a semi-elliptic profile as shown in Fig. 1 for which the crack
depth is gliven by

Lixy) = L /T={xy#c)?/a% , (-d<x,<=b) (83)

or
Liy) = LO/T:Ty+c|)Z » Y = Xy/a, ¢, = c/a, (-c‘-l<y<-c]+l): (84)

The stress intensity factors shown in the Tables are calculated from
(71) and are nermaiized as follows:

ky (x,) p_R L
x) = ——2 -0l S}
kt (X) kot ’ kOt ’ h /ﬁ- gt (EO) 1] gO h » (85)
ky (x,) p_R L
- ]'72 o i , 0
kb(x) = kob ’ kob = "'h" = vh gb(go) ’ 50 - "F" ’ (86)

where X = y+c, = (x,+c)/a and k. Is the contribution of the membrane com-
ponent N]' and kb that of the bending component Myy of the external
loading (see, equations (C9) and (C10)). The total Mode | stress inten-
sity factor alolg the crack front is then given by

k,(i) - kt(i) + kb(i) , (=1<x<1) . (87)

The normalizing stress intensity factors kot and kob are the correspond-
ing edge crack values obtained from the plane strain solution of an
edge-notched strip under a membrane stress N, = PoRi/h or a bending
moment Mo = poRih/6. The expressions of g, and g, are given by (73).
For values of Lo/h which are used in the numerical calculations they

are also given by

u22-



LO/h = go 0.2 0.4 0.6 0.8
vh/L_ Lo' gt(f;'o) 1,3674 2,1119 4,035 11.988
»’E’/l.o 9, (£,) 1.0554 1.2610 1.915 4,691

In the tables contributions of the membrane and bending loads
are shown separately in order to give some idea about the nature of the
loading. The results show that even though generally the membrane com-
ponent is the dominant stress intensity factor, near the fixed end,
particularly for relatively small cracks the stress Intensity factor
resulting from the bending component of the external load may be the
more signiflcant one.

Tables 3-7 show the normalized stress intensity factors kt and
k, at the maximum penetration point (x = yc, = (x2+c)/a = 0) of a
semielliptic inner or outer surface crack in the pressurized cylinder
for various combinations of the dimensionless length parameters Lolh.
a/h, c¢/a and R/h. In all calculations given in this paper it is assumed
that the Poisson's ratio v is 0.3. The effect of v on the stress
intensity factors, however, is known to be rather insignificant [4].

Tables 8-10 show some examples for the distribution of the normal~
ized stress intensity factors kt and kb along the crack front. As
expected, for cracks very near the end the stiress intensity distribu-
tion is highly nonsymmetric (with respect to the mid-point x =
(x2+c)/a = 0) and as ¢ Increases it becomes morc symmetric (see, for
example, Table 9, c/a = 10).

Some sample results showing the variation of the total stress
intensity factor are given in Figures 3 and 4. The total stress
intensity factor ky Ts calculated from (85)-(87) as follows:

Ky (xy) = kotkt(i) + kobkb(i)
pR. - -
=('%TJ'VT;)[kt(X)/F7t;-gt(Lo/h)+kb(x){h/Lo gb(Lo/h)] - (88)

-23-
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Figure 3 shows the stress intensity factor at the deepest penctra-
tion point of the crack (i.e., for L=L_ at x,=-c) as a function of the
distance ¢ to the end of the cylinder for a fixed crack size (a/h = 1,
LO/h = 0.4) and for various values of the curvature. This figure too
shows the drastic reductfon in the stress intensity factor caused by
the end stiffener and by the increase Iin the cylinder radius, The
results shown in Fig. 3 are obtained for an outer crack. For greater
values of R/h if the crack is very near the cylinder end then the stress
intensity factor may be negligibly small or may even be negative. This
shows the importance of the bending moment M, which develops in the
cylinder as a result of constraining the end. Needless to say, when
k| beccmes negative along any portion of the crack front the problem is
no longer a simple crack problem and must be treated as a crack~-contact
problem. In such a case the solution given in this paper is, of course,
not valid. The crack contact problem is highly nonlinear in which the
additional unknown function L(y) has to be determired by using the infor=-
mation that the contact is ''smooth' and consequently the total stress
intensity factor along that portion of the crack front is zero. Even
though the problem can be solved by a complicated iterative scheme,
quite clearly it has no practical value. From a viewpoint of structural
failure, the important problems in practice are those of crack opening
not crack closing.

Finally, some examples showing the distribution of the total stress
intensity factor k‘ along the crack front are shown in Fig. 4. Curves
a and b show k‘ respectively for an outer and an inner crack for the
same cylinder and crack dimensions (R/h = 10, LO/h = 0,4, a/h = 1,

c/a = 1.1). The difference between the two results is again primarily

due to bending moment M]‘ caused by the end constraints. Curve c shows

the distribution of k, for a longer internal crack (ath = 3, c/a = 1.1,

R/h = 10, Lolh = 0.4). The intensification in ky along the crack front
away from the fixed end observed in curve c may be due to slight cylinder
bulging as well as to the decrzase in the influence of the end constraints.
Curve d shows k' for an outer crack away from the end (c/a = 10, a/h = 1,
R/h = 10, L /h = 0.4) for which the distribution as expected is nearly
symmetric.

-24 -
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APPENDIX A OF
Dimensionless and normalized quantities

X = x]/a, y = xz/a, zZ = x3/a, b] - 23 c = §3 d, =

u= u,/a, v = mzla, We u3/a )

F(x',xz)
BX = B]’ BY = Bzi ¢(X’Y) = "S'Z'E"—' »

. 2 - 2 - 2
Mex = M /h2E, Mo = Myp/h2E, M = M)/h2E

Yy

‘A‘{ = 12(1-v2)a"/h2R2, A% = 12(1-v2)a2/h2, « = E/BAY

For dimensions and notation see Figure 1.
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Expressions for stress resultents and rotations.

00 [~
L 8
- L 2
Nxx(x,y) I 212 o T”da + [ 252 n Lucossx ds , (8.1)
-0 o
N (x,y) INQZZTd ImgL B2cosBx df (8.2)
Wx,/ lamj i L Ly cosBx dB, .2) .
~co o
N, (x,y) ifﬁ:’3rd+f§ L,.sinBx dB (8.3)
xyx,y 1ctmj Ija San Uanx ’ .3
-00 0
M__(x,y) = w?: (m,2=va?2)T, .da - mg (B2-vn?)L,, cosBx dB
xx 0 SR I A j"2]
-0 0
1=v)i ]=-
- (_E%);_a_ I ar‘T3da + -(-ﬁ-};)-)i J Bs L 4c0s6x dg , (8.4)
w00 o
M (x,y) = J‘m g (vm, %=a2)T,,da - J g (vB2=n.2)L,.cosBx dB
yy "’ 1 J 2] 5 J 2]
-0 o)
1-v)1 1-v)a [
+ Lﬁ%-ﬁ J ar|T3du - —(-ﬁ-z\{lij s)BcosBx d8 , (8.5)
-0 0o
(x,y) (l)w“ T (1 )rg L,.si
Mxy X,y =i(l=v J % amj zjda - {l-v z an 2jsm.sx dg
-0 (¢}
- {I=v)a (024r 2)T da + (1-v)a (s,2+82)L,sinBx d8, (B.6)
2hA7T 173 “ZhaT | 51 3 » A
-0 (o]
chat f”“ khAt Jwe
’ = Zp.mT,. - z L.
v, (x y) S J L pym; szu z BqJLstian dB
- 00 0
-i J aT3du + I s]L3 sinBx dg , (8.7)
-0 o
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0 o0
ixhat I i kha f 8
‘ z T,.do + .n,
3 z apj 2 o 3 g qJnJLZJcosBx df

-0 0

Vy(x,y) = -

X 00

-[ r]TBda - j BL3cosBx dg , {6.8)

_hat ok hat
Bx(x,y) —_ J § ijz do = -——-J

- 00 0

[$2 15 Ko ed

BLZJ sinfx dB

- J aT3da + f s, singx d8 , (8.9)

- 00 0
y o "
ihA hk
By(x,y) = —?;-—f L aT, da + — I § njszcosBx dg
-0 o

o0 o0

-J rlT3da - J R B2 cosfx dB8 . (8,10)

-0l o

where | 2.2

T‘j <X’Y’a) = T

R, (a) m, x=iay

rrakh

J
R.(a) m . x=iay
A a7 j
(x,y,a) = r qu'Kpj-l e

>;|_

i
T3(X.y,a) = ﬂ-é-'-—l-/\l(cc)erl Y )

2 2

>
i

A
>4

n ﬂjy
L . = - ° ]
a 1

2
Ly (v:8) = 2 3w a1

n.y
SJ- (B)e J 1

K(l v)

LB(Y,B) = B, (B)

R

AT L
¥



Clg MPAL, )

OF PCOR QUALIYY
APPENDIX C

Stresses in the uncracked pressurized shell with a fixed end

In this simple axisymmetric case by assuming that the ends of the
cylinder is closed and by observing that

up =0, By =0, gy = u3/5, Nyy = ER/2 (c.1)

following the notation of [18] we can write

ho dY Y3 3, 9%
Mt @ VR M T T R YR (c2a,b)
d%u 3
Mo, = <D ——a, My, = W, D = smrd (C3a=c)
22 dx2 R B 22° 12(1-v%)
d2M
22 1

where p is the internal pressure and Xy is the only independent variable.
From (C.1)-(C.4) it may be shown that

__Eh vpR _
Nia R Y3t 5o (c.5)
d4u

3 N = - 2" oo - Eh
T Mty = - T f s (rmeg<0), 8% = ppry (c.6)

Solution of (C.%) which is bounded at x,=== and satisfies
u3(0) =0, 2 u(0) = 0 (.7)
3 ’ dx2 *

becomes

B T

Tip o WD
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Rx

- 2
u3(x2) = -2-2-?—&— [e 2(cossz-sianz)--l:I » (x,<0).

From (C.8), (C.5) and (C.3) it then follows that
-y BX

N”(x2 = - 2—2——e Z(cossz-sianz) + pR ,

. - Bx
M”(xz) = -\3%2-\’—)-;: e 2(c056x2+sin6x2) , (-w<x2<0)

(c.8)

(c.9)

(c.10)

3 e
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Table 1. Membrane component of the normalized stress intensity factor ky in
a pressurized cyiinder with a fixed end containing an axial through
crack, v=0.3.

km(-b) km(-d)
R/h /s
a) ] 1.1 1.5 2 10 ] 1.1 1.5 2 10
] 2.933 |0.151 {0.346 |0.572 [1.286 [n.535 |0.575 |0.734 |0.915 {1.284 .
5 2 5.754 |0.284 |0.839 (1.340 [1.645 [1.082 [1.158 |1.425 |1.613 |1.645 :
3 | 9.164 [0.490 |{1.500 |2.015 |2.067 |1.583 {1.687 {1.985 |2.081 [2.067
10 |43.555 |2.853 [4.703 |4.912 |h4.923 |4.422 [4.,605 |4.850 |4.929 [4.953
] 2.128 |0.119 [0.235 10.364 |1.168 |0.355 |0,380 |0.483 |0.61) |1.158
10 | 2 3.728 |0.181 |0.477 [0.814 |1.331 [0.713 |0.765 {0.967 |1.167 {1.332
3 5.658 {0.277 |0.840 {1.338 {1.589 |{1.067 |1.142 |*,402 {1.573 [1.588
10 |25.183 |1.627 |3.467 [3.605 |3.620 {3.139 {3.314 !3.551 |3.602 |3.620
] 1.622 |0.102 [0,172 |0.236 |1.063 |0.232 [0.2h47 |0.303 |0.373 |1.081
25 | 2 2.423 10.128 |0.275 |0.448 [1.147 |0.431 |0.463 |0.590 |0.743 |1.142
3 3.397 |0.165 |0.424 [0.728 {1.259 {0.650 {0.697 {0.882 |1.074 |1.260
10 [13.151 [0.860 |2.218 {2.480 |2.469 |2.031 |2.160 [2.429 |2.466 {2.46
1 1.345 |0.093 |0.140 |0.167 |0.685 |0.159 |0.166 |0.188 [0.215 |0.7
100 | 2 1.598 |0.100 |0.169 {0.232 |1.045 [0.229 {0.242 |0.296 |0.367 |1.063
3 1.956 {0.111 |0.213 {0.225 [1.107 |0.321 |0.343 l0.434 |0.548 |1.097
10 5.563 10.269 |0.839 [1.336 [1.542 |1.049 [1.126 [1.380 |1.536 [1.542
1 1.293 |0.092 [0.134 |0.155 |0.496 |0.146 [0.150 [0.165 |0.182 |0.546
2 1.431 {0.095 [0.150 |0.190 |0.885 [0.184 |0.193 |0.227 {0.272 |0.937 i
200 1 3 | 1.633 [0.101 |0.173 |0.241 |1.058 [0.238 [0.253 |0.311 |{0.388 {1.070 3
10 3.864 |0.184 [0.507 |0.874 |1.308 |0.745 |o0.801 {1.007 |1.199 |1.308 R
H
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able 2. Bending component of the normalized stress intensity factor ky in a pressur-
ized cylinder with a fixed end containing an axial through crack, v = 0.3,

kb(-b) kb(-d)
/hNe/ 5 1 1.1 1.5 2 10 ! 11 1.5 2 10
I | -20.927 |-0.312 {-0.085 | 0.030 | 0.115 | 0.051 | 0.061 | 0.100 | 0.136 | 0.115
2 | -14.250 {-0.183 | 0.069 | 0.220 | 0.185 | 0.151 | 0.160 | 6.196 | 0.211 | ¢.185
3 | -11.925 |-0.196 | 0.178 | 0.266 | 0.188 | 0.180 | 0.189 | 0.220 | 0.220 | 0.189
- ]0 "6.839 -0028“ -00582 -0-869 -0-935 -001‘9' -O- 593 '0-808 -00920 “0.933
1 | -23.096 [-0.316 |-0.134 [-0.051 { 0.080 |{-0.014 [-0.007 | 0.029 | 0.069 | 0.076
o | 2 | ~13.258 |-0.170 |-0.019 | 0.116 | 0.147 | 0.095 | 0.103 | 0.138 | 0.167 | 0.146
3 -9.371 |-0.167 | 0.077 | 0.223 | 0.183 | 0.143 | 0.153 | 0.191 | 0.208 | 0.183
[ 10 | -5.995 [-0.22] | 0,025 [-0.14k [-0.199 |-0.029 |-0.046 |-0.111 |-0.181 [-0:199
1 | -25.930 |-0.326 {-0.180 |-0.130 | 0.086 |-0.092 |-0.086 |-0.057 [-0.021 | 0.073
= | 2 | -12.693 [-0.165 |-0.091 | 0.000 | 0.090 | 0.023 | 0.029 | ¢.063 | 0.098 | 0.090
3 -8.235 [-0.144 |-0.027 | 0.098 | 0.138 | 0.079 | 0.087 | 0.123 | 0.154 | 0.137
| 1c | -4.065 |{-0.194 | 0.256 | 0.270 | 0.148 | 0.159 | 0.172 | 0.199 | 0.174 | 0.148
1 | -28.812 |-0.339 {-0.227 |-0.210 | 0.069 {-0.179 |-0.178 [-0.164 |-0.142 | 0.077
ol 2 | =12.677 |-0.171 [-0.160 |-0.118 | 0.081 {-0.082 |-0.079 [-0.052 {-0.022 | 0.070
3 -7.162 |-0.140 [-0.116 [-0.052 | 0.071 |-0.023 [-0.018 | 0.020 | 0.048 | 0.066
10 | -1.933 |-0.134 | 0,104 | 0.243 | 0.197 | 0.13h | 0.147 | 0.234 | 0.235 | 0.198
1. | -29.841 {-0.342 |-0.242 |-0.236 | 0.019 |{-0.209 |-0.209 {-0.202 |-0.187 | 0.036
ol 2 | =12.761 {-0.175 [-0.184 |-0.160 | 0.081 |-0.127 [-0.125 |-0.108 |-0.082 | 0.082
3 -6.911 |-0.14h {-0.148 [-0.106 | 0.077 [~0.073 [-0.070 |-0.047 {-0.013 | ©.066
10 | -1.418 |-0.115 | 0.018 | 0.153 [ 0.163 | 0.097 | 0.101 | 0.145 | 0.180 | 0.163
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Table 3. Normalized stress intensity factors in a cylindrical shell
with a fixed end containing an axial semielliptic surface
crack and subjectrd to internal pressure, R/h = §,
Outer Crack, R/h = 5, v = 0.3
ale L° = 0,2h Lo = 0,4h Lo = 0,6h Lo 0.8h
h | a kt(O) kb(O) kt(O) kb(O) kt(O) kb(O) kt(O) kb(O)
1 304 [~-.0679 |.185 |~-.0367 |.0895 |-.0108 .0273 .0009
1.1 1.33] -.0490 |.202 -,0276 |.0984 |-.0087 {.0300 .0003
1 1.5 |.446 .0160 |.277 L0064 {.137 .0009 |.0417 {-.0008
2 .585 .0639 |.368 .0338 [.183 .0099 }.0559 {-.0009
10 .918 -.0018 |.588 -,0011 {.295 -.0004 |.0898 .000
T |.629 L0671 |.Lh% .0382 |.246 ,0132 |.0818 | .0000
1.1 |.680 .0778 |.484 .0459 |.270 .0168 {.0905 .0007
2 1.5 |.856 .0895 |.621 .0580 |.355 .0248 |.121 .003C
2 .979 L0641 |.718 .0L41 |.415 .0206 {.143 .0033
10 _}.993 | .000 |.737 | .000 |.430 | .000 |.147 | .000
1 |.880 | .0906 |.673 | .0605 |.B10 | .0273 |.150 | .00h1
1.1 |.926 .0859 (.713 .0590 |.439 .0279 |.162 .0048
3 1.5 |1.040 .0489 |{.812 .0373 [.51 0106 {.193 .0051
2 |L050 .0107 |.835 .0099 |.532 ;067 |.202 .0022
10 |1.020 | .000 {.817 | .000 |.523 | .500 [.148 | .000
1 {060 -,0020 |{.935 -.0014 |.705 -.0005 -{.338 .0002
1.1 |L0O60 |-.0009 |.935 |-.0008 {.707 |-.0004 |.339 .000
10 {1.5 {1.060 .0001 |.9M1 .000 Al .000 344 .000
2 Jl.o70 .000 .944 .000 .720 .000 .348 .000
10 11.070 .000 [.952 .000 |.732 .000 |.357 .000
' Inner Crack, R/h = 5, v = 0.3
T 1239 [ 0670 [.177 | .0351 |.0843 | .0099 |.0265 |-.0010
1.1 ].325 .0482 | .193 0263 1.0928 | .0080 |.0290 |-.0005
! 1.5 | .437 |-.0157 |.262 -.0059 |.127 -,0006 |.0399 .0008
2 .572 -.0625 | .346 -.0311 |.168 -.0082 |.0529 L0014
10 .89¢8 .0018 |.551 .0010 |.270 .0003 .Q§Bh .000
1 |.612 1-.065T [.410 [-.417 |.216 |-.0097 1.0728 | -0071
1.1 1.660 |-.0756 [.445 |-.0411 |.236 |[-.0128 .0797 | .0006
2 1.5 |.833 |-.0869 |.567 -.0517 }.305 -.0190 |.104 |-.0009
2 .952 |-.0A21 |.656 |~-.0392 |.355 -.0157 |.121 -.0015
10 .968 .000 .676 . 000 +370 .000 .126 .000
1 .857 [-.0876 .613 -.0532 |.347 -.0202 |.123 -,0013
1.1 {.902 -.0832 |.649 -.0521 |.369 -.0208 |.132 -.0020
3 1.5 {LO10 [<.0475 |.739 -.0331 |.427 [-.0156 |.154 |-.0028
2 1.030 [-.0105 [.762 [-.0088 |.445 |-.0052 |.161 |{-.0014
10 EQQQ .000 .750 .000 442 ,000 . 160 .000
1 [1.050 -.0018 |.896 .0008 !.628 -,0003 |.269 -.0005
1.1 {1.050 .0009 |.898 .0005 |.6%2 .000 272 -.0002
10 {1.5 [1.060 .000 .906 .000 644 .000 .281 .000
2 {1060 .000 911 .000 .652 .000 .286 .000
10 {1.060 .000 .920 .000 .665 .000 .294 .000
=35~
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Table 4. Normalized stress Intensity factors ina cylindrical shell
with a fixed end containing an axial semielliptic surface
crack and subjected to internal pressure, R/h = 10,
Outer Cyrack, R/h = 10, v = 0,3
a |c L= 0.2h L = 0.Gh L, =0.6h L =0.Bh
h a kt(D) kb(O) kt(O) kb(O) kt(O) kb(O) kt(O) kb(O)
U | 217 [=.132 [.130 [-.0677 [.062% [=.0182 [.0T89 | .002T —
1.1 .233 |-.116 LY -.0605 |.0676 {~.0168 |.0205 | .0021
1 1.5 .304 |~.0535 {.,187 |~-.0299 |.0907 ~.0093 |.0274 | .0005
2 .4oo .0052 |.248 .0016 |.121 -.0001 |.0366 |-.0004
10 .885 =.0013 |.559 |-.0006 |.276 |-.0002 |.0829 ,000
[ .43 ,0057 |.300 .0006 |.161 -.0012 |.0515 |[-.0008
1.1 470 | ,0234 |.330 .0117 {.178 .0030 {.0571 {~-.0006
2 1.5 .628 .0721 |.448 .0h47 |.247 0174 |[.0800 .0011
2 . 784 .0873 |.566 .0574 |.316 L0244 1,103 .0026
10 | .938 | .0002 |.687 | .0001 |.389 | .000 [.127 | .000
| .o43 .0738 [.489 L0472 |.287 .0195 1.0982 .0019
1.1 .699 .0822 |.531 L0541 1.315 .0234 |.109 .0027
3 1.5 .866 .0853 |.670 .0607 |.403 .0298 |.144 .0053
2 .972 .0547 |.760 L0412 |.468 .0220 |.167 .0047
10 .969 .000 . 765 .000 .290 .000 . 170 .000
] 1,030 |-.0003 [.921 ..00156 |.705 .00338 |.337 .0029
1.1 [1.030 {-.0032 |.916 |-.0012 |.704 .0012 |.339 .0016
10 {1.5 {1.010 [~-.0013 |.908 |[-.0012 {.703 |-.0008 340 |-.0002
2 1.010 .0002 [.911 .000 .706 .000 .343 .000
10 [1.020 .000 917 .000 .716 .000 .350 .000
Inner Crack, R/h = 10, v = 0.3
| .215 .131 127 .0659 1.0607 .0171 [.0187 [-.0029
1.1 .230 14 .137 .0587 |.0655 .0158 [.0201 {-.0023
1 1.5 .301 .0529 [.181 .0287 |.0872 .0085 [.0268 |-.0006
2 .395 |~-.0052 [.239 {-.0015 |.116 .0001 [.0355 .0004
10 | .872 | .0012 |.536 | .0006 |.261 | .0002 [.0796 | .000
1 424 1-,0054 [.286 .000 . 149 .0018 [.0482 |'.0011
1.1 463 |-.0229 |{.313 [-.0106 [.164 |-.0021 .0531 .0009
2 1.5 .616 [=-.0707 |.421 -.0415 [,223 |-.0145 |.,0727 |-.0002
2 .768 [-.0855 |.530 |-.0529 .283 |-.0202 [.0925 |-.0011
10 | .920 |-.0002 |.644 | .000 |.348 | .000 |.113" | .000
1 .635 1-.0721 |.457 -.0430 |.255 [-.0154 |[.0863 |-.0003
1.1 .685 |-.0804 |.495 |-.o0494 .277 |-.0187 [.0944 [-.0010
3 |1.5| .848 |-.0834 |.622 |-.0553 |.353 [-.0238 |.121 |-.0028
2 .952 (-.0535 |.705 |-.0375 |.405 [-.0175 [.140 -.0027
10 .950 { .000 .713 . 000 414 .000 .143 . 000
1 1.020 .0005 |.876 |-.0023 [.616 [-.0038 [.260 |-.0022
.1 |1.010 .0029 1.874 .0003 [.619 [-.0018 [.263 |-.0015
10 {1.5 {1.000 | .0013 [.871 .0010 |.624 .0005 |.269 .000
2 1.010 |~-.0001 |.875 .000 .631 .000 .273 .000
10 1.100 ,000 .882 .000 {.642 . 000 .281 .000
-36-
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Table 5. Normalized stress intensity factors in a cylindrica)
shell with a fixed end containing an axial semielliptic
surface crack and subjected to internal pressure, R/h = 25,
Outer Crack, R/h = 25, v = 0.3
ale Lo = 0,2h L° = 0.4h I.o = 0,6h Lo = 0,8h
h| a kt(O) kb(O) kt(q) k, (0) kt(g) kb(OXjﬁ,kt(o) kb(b)
| 161 [ =.20] .0957 [~.102 .0456 [ -.0265 [.0138 . 0045
'ol 0'68 -5189 -'0‘ --0972 .01082 '00260 00“.6 .00‘00
I 1.5 204 1w, 140 24 -.0747 1 .0598 |-.0214 {.0180 .0023
2 .255 | -.0860 |.157 |-.0469 |.0759 |~.0140 |.0228 | .0012
10 | .853 | .0403 |.534 | .0225 |.261 .0069 |.0776 |-.0005
] .27% | -.0909 [.188 |-.057h4 |.099%1 |~-.0219 |.0312 |-.0012
1.) .297 [=-.0721 {.205 |-.0466 {.109 -,0185 {.0342 |-.0013
2 1.5 .397 [-.0053 {.280 |~.0054 |.150 |-.0031 |.0473 |-.0007
2 .524 .0488 |.372 .0306 |.202 0119 {.0637 .0006
10 | .908 |-.0032 |.656 |-.0022 |.362 |-.0009 |.11k | .0G0
] 411 [ -.0045 [ .306 [=-.0057 [.17h -.0039 |,0568 [~.0011
1.1 449 L0140 | .336 .0069 |.193 .0015 | .0631 |=~-.0005
3 1.5 .601 .0669 | .458 0454 |.268 .0202 | .0887 .0024
2 .757 .0879 | .582 .0628 | .345 .0303 |.116 0047
10 .936 .0002 |.729 . 0001 .hBQ_ .000 148 .000
1 1.000 L0474 1 .894 .0520 [.675 .0299 | .306 .0108
1.1 {1.020 .0345 | .908 .0317 | .691 .0239 |.317 .0094
10 1.5 |1.010 .0016 | .915 .0031 |.708 .0043 | .332 .0028
2 .991 | -.0035 | .898 [-,0028 |.698 -.0017 | :329 -.0004
10 ;990 .000 .899 .000 . 701 ;000 . 332 .000
Irner Crack, R/h = 25 v = 0,3
1 .160 .200 . 0948 . 101 . 0451 .0257 | .0138 | -.0047
1.1 .168 .189 .0998 .0960 | .0476 .0252 | ,0145 | -.004)
1 1.5 .203 140 122 .0734 | .0588 .0206 | .0178 | -.0025
2 .253 .0855 | .154 .0459 | .0743 .0133 | .0225 { -.0014
10 | .847 |-.0400 |.523 |-.0218 |.253 |-.0065
1 ,272 | .090% |[.185 .0563 | .0960 | .0211 |.030% | .0010
1.1 .294 .0716 | .201 .0456 | .105 .0176 | .0332 .0011
2 1.5 .394 .0053 |.272 .0052 | .143 .0030 | .0453 .0007
2 .518 | -.0483 | .360 |-.0293 {.191 -.0107 | .0603 | -.0003
10 .83§ .0032 |.632 .0021 | .339 .0008 | .107 .000
1 407 | .0046 [.2986 | .0060 |.16h 0042 | .0534 | .0013
1.1 L4l | -.0137 | .324 ~-.0062 | .180 -.0009 | .0589 { -.0008
3 1.5 .594 | ~-,0661 [.438 |~.0431 |.247 |-.0177 |.0810 |-.0015
2 747 |~-.0867 |.555 |-.0593 |.316 [-.0263 |.lo4 |-.0031
10 .925 | -.0002 [.696 [-.0001 |.401 . 000 .133 .000
1 997 [-.0467 [.849 [-.03 . =.0245 [.239 | -.0069
1.1 |1.000 [-.0341 |.864 [-.0296 |.606 |-.0199 |.248 |[-.0062
1o {1.5 |1.000 |-,0017 { .874 |-.0032 |.625 -.0040 | .261 -.0021
2 .982 .0034 | .860 .0026 | .620 .0013 |.261 .0002
10 .981 { .000 |.862 .000 |.626 000 1,266 000
-37-
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Table 6, Normalized stress Intensfty factorsinz»cyllndrlcal shel}

with a fixed end containing an axia) semielliptic Surface
crack and subjected to internaj Pressure, R/h = jog.

Outer Crack, R/h = 100, v = 0.3
E’I c I‘EQ = 0,2h L, = 0.Th L, ~0.8n L, = 0.%h
_117 a “t(O) kb(OJ kt(o) kb(O) kt(o) kb(O) kt(OJ kb(OJ
' 0'30 “0273 00768 .0'38 -0365 -'0355 00"' -0063
’o' -'32 "0267 10788 '-'36 -0376 "n°360 .0”‘9 .0058
Polrs | o1ky =+233 1,087 |-,}126 0419 |- 0353 <0126 | o044
2 160 {-,204 .0982 |-, 109 0474 [-.0376 0142 | 0034
|10 .582 .362 -0386 |.17¢ 0116 1,052 -.0010
] 7 T3 T08Ts =083 T 0T8T T=5072
1.1 (123 1. 127 0646 1~ o479 0202 {-.0020
2 11,5 152 |-,0972 +0804 |- p385 0251 [-,0023
2 . ! : .gzl -.osgg 102 1. 0248 0318 |-,0018
10 .90 0431 1,647 0283 |, 359 0121 |.109 .0010
] 2K TITE T 5 [-.10% .0923 -. 0458 17025 = 0049
l . ] . ZAO “ 136 . l 78 -0091’1‘ . 0999 “'-01’20 0032' '.00168
3 1.5 310 =.0689 |,234 ~.0501 {.133 =.0238 |, 0429 -.0033
2 406 |-, 0047 :308  |-~.0046 178 [-.0029 0573 [-.0007
—llo 943 | .0009 . 725 0007 |.424 0004 [.138 .000
] 689 08231 09 0678 [.55] 041477778 .0108
1.1 [ 740 0891 |,655 0739 [.479 0464 |, 196 .0128
10 11.5 | .g0) 0835 1,805 +0722 |.599 0493 |,254 .0160
2 -992 | L0477 |.89] 0426 |{.670 .0308 |,2838 0
10 2975 000 .88n 1—.000 67 {000 289 000
Inner Crack, R/h = 100, v = ,3
] 130 | 273 0767 | 137 »0365 | 0353 L0111 |- 0064
1ot 32 267 |,0787 136 [.0375 0259 |.0114 ~.0058
1.5 | .14y +239 11,0869 | 126 <0k18 | 0350 0126 (-, 0044
2 .lgo 204 [, 0979 .log .ohzz 0313 |.0142 -.0035
10 -5 ‘ '00700 0359 '003 2 0'7 "-0]'3 005'7 nOO"
LR 1161733 T 085 001
11179 | L204 .123 126 |.0640 .0018
2 1.5 217 | 150 |.150 0963 |,0793 .002]
2 *271 1 .0918 |.189 0599 |.100 .0016
,O -902 '001’29 -638 '00283 -31‘2 - '-0008
] +2258 753 10788 - 104 10908 | 0455 -0297 | .o0Lg
Pl | 2239 | 136 .176 -0934 1.0981 | o479 0315 | o045
3 1.5 | .308 0687 |.230 -0493 {,13p +0229 1.0417 .0030
2 404 | ooy .303 0045 |,172 -0028 1.0553 |  00pe
10 938 |-.0009 |.71] 20007 |.408 |-,0004 132 | 000
1 . 684 <0877 591 1=10891 . 409 ~.0370 [.158 -.0087
‘,ol 0734 -00881’ 0635 -¢o7]' .‘0‘02 "-01”6 0]70 '.0098
10 [1.5 | .894 -.0829 |,779 =.0695 |.549 =.0440 |.21¢ -.012]
2 .985 [-~.0473 863 |- 0470 614 =.0275 |.244 -.0084
10 | .969 | 900 1.854 | .000 [.614 000 1.247 | logo
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Table 7. Normallzed stress intensity factors in a cylindrical
shell with a fixed end containing an axial semielliptic
surface crack and subjected to internal pressure, R/h = 200.
Outer Crack, R/h = 200, v = 0.3

ale Lo = 0.2h Lo = 0.4h Lo = 0.6h Lo = 0.8h

h|a kt(O) Rb(O) kt(O) kb(O) kt(O) kb(O) kt(O) kb(b)
| 24 1-.297 .0734 |~-.150 .0349 [-.0385 |.07106 ,0069
1.1 | .126 {-.293 |.0749 |-.149 |.0357 |~-.0395 |.0108 | .0064
| 1.5 133 |~-.273 .0802 |~-.144 .0385 |-.0401 {,0116 |~-.0227
2 42 1~ 247 .0867 |=-.132 .0418 {-.0380 {.0126 0041
10 | .426 | 0261 |.264 | .0143 |.128 | .0043 |.0380 |-.0004
[ 152 |-.263 |.103 |-.162 |.0535 |-.0595 [.0168 [-.0018
1.1 .156 |=-.253 107 {-.158 .0558 {-.0591 {.0175 {=-.0023

2 {1.5 1] .177 |-.212 |.124 |-.136 |.0654 [-.0533 |.0204 |-.003]
2 ,209 |~-.162 47 |-.106 ,0783 |-.0426 |.0243 |-.0028
10 | .797 | .0801 |.568 | .0532 j.306 0221 |.0948 | .0017
i 183 [=.216 |.13% |-.148 [.07h47 |-.0637 |.0239 [-.0065
1.1 192 |-,202 |.142 [-.139 |.0794 {-.0614 .0254 |=-.0067
3 |1.5 | .234 {~.144 {.176 |-.103 |.0998 |-.0474 |.0320 -,0060
2 .295 |~-.0821 |.223 -.0596 |.128 -.0284 |.0410 {-.0039
10 .942 L0364 [,72] .0266 |.420 .0129 |.135 .0019
1 504 |-.0314 |.444 0242 1.318 0131 [.124 .0026
1. . 549 .0482 |.485 .0387 |.349 0227 1.137 . 0054
10 |1.5 | .719 | .0876 |.639 L0744 |.468 L0486 |.190 L0142
2 .873 .0880 |[.780 .0767 {.577 .0525 |.238 .0168

10 .972 .000 .874 002 .652 .000 «273 ,000

inner Crack, R/h = 200, v = 0.3

T 124 | .297 .0734 | .149 [.0349 [ .038h [.0106 [-.0069
1.1 .126 .293 .0748 149 .0357 .0394 {.0108 |-.0064

1 1.5 132 .273 .0801 143 .0385 .0400 |.0116 .005]
2 42 247 .0866 132 0417 0378 |.0126 |-.C042
10 .Qgﬁ -.0261 |.263 |-.0142 |.127 |-.0042 |.0378 .000&
i .151 .263 .103 . 162 .0533 .0591 0167 .0017
1.1 .156 | .253 .107 .157 .0556 .0587 |.0174 .0022
2 1.5 A77 1 L2101 .123 .135 .0650 .0527 1.0203 .0029
2 .209 .162 146 .105 0777 0420 |.0242 .0027
10 | .795 |-.0799 |.563 |-.0527 [.302 |-.0215 !.093k |-.0015
1 .183 .216 . 134 BLY; L0741 0629 {.0237 .0063
1.1 191 .202 R .139 .0786 0605 |.0252 .0065
3 1.5 .233 . Vhb 74 . 102 .0985 o465 |.0315 .0057
2 .294 .0819 |.221 .0589 1.126 0276 |.0403 .0036
10 .939 |-.0363 |.713 |-.0262 |[.410 |~-.0124 [.132 |-.0017
1 .502 .0312 436 |[-.0233 |.303 -.0118 [.114 |~-.0018
1.1 .546 |~-.0479 |.475 |-.0376 |.332 |-.0210 .126 |-.0C43
10 1.5 .715 |-.0871 |.625 |-.0725 |.4h -.0451 |.170 |[-.0118
2 .868 [-.0876 |.762 -,0746 |.542 }|-.0484 |.212 [-.0137

10 .967 .000 .855 .000 .61L .000 .243 .000
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Table 8. Distribution of the normalized stress intensity factors
along the crack front In a cylindrical shell containing
an axial semi-elliptic surface crack and subjectied to
internal pressure, x = (x,+c)/a, R‘h = 10, a/h = 1, c/a =
1.1,

Lo/h 0.2 0.4 0.6 0.8

k Ky, ke kb Ke ky, kt Ky,
X Outer Crack, R/h = 10, a/h = 1, c/a = 1.1
.929 |.088Z [-.28] |.0815 |-.170 .0310 [-.0799 [.0095 [-.0212
.828 {,106 |[-.247 |.0685 |-.145 .0339 [-.0590 {.0106 |~-.0128
.688 0127 -!231 00806 -0‘22 0039" ‘.Olmz -0‘28 '00055
.516 1.153 |~-.203 .0958 |[~,102 .0467 {-.0318 |.0148 |~,0005

.319 [.183 |-.169 !.113 |[-.0837 |.0556 |-.0229 |.0168 | .0019
.108 |.216 [-.133 {.13) |=-.0676 |.0635 |-.018] [.0193 | .0026
0 .233 [-.116 |.141 |-.0605 |.0676 |-.0168 |.0205 | .002]
-.108 |.248 |-.0990 |.149 |-.0539 |.0716 |-.0161 |.0216 | .0012

-.319 [.275 |[-.0687 |.i64 |-.0420 |.0785 |[~.0153 |.D236 [-.0010
-.516 1.293 [-.0433 |.175 |-.0316 [.0829 |-.0144 |.0257 |-.0026
-.688 |.298 |[-.0231 [.179 |[~.0224 |.0846 |-.0126 |.0267 [~-.0034
-.828 |.288 |-.0085 [.176 |-.0147 |.0840 |-.0103 |,0259 |-.0034
-.929 |.258 .0004 |.167 |~-.0089 |.0818 |~.0082 |.0251 |-.0031

nner Crack, R/h = 10, a/h = 1, ¢c/a = 1.]

—.929 [.0886 | .247 ].0619 | .169 |.0310 | .0795 ].009% | .0210

.828 |.106 .246 |.0683 | .144 |[.0334 | .0582 |.0104 | .0125
.688 |.127 .230 [.0796 | .121 |.0386 | .o43! [.0124 | .0052
.516 |.152 .202 |.094) | .100 |.0454 | .0306 [.0144 | .00G3

RPN AR

.319 |.182 167 |.110 .0818 |.0533 | .0217 |.0164 |~.0022
.108 |.214 132 |.128 .0658 {.0615 | .0170 |.0189 |-.0028 -
0 .230 14 1,137 .0587 1.0655 | .0158 |.0201 |-.0023 ;

.828

.108 |.246 .0980 |.145 .0522 |.0694 | .0151 |.0212
.319 {.273 .0680 |.160 .0407 [.0761 | .ot44 [.0231 | .0008
.516 |.291 L0428 |17} .0306 |[.0805 | .0136 |.0251 | .0024
.688 |.297 .0229

.0013

175 .0217 |.0821 | .0119 |.0260 | .0032

286 | .008h [.173 | .0142 |.0817 | .0097 |.0251 | .0032
.929 |.257 | .oook |.165 | .0085 |.0796 | .0077 |.02h2 | .0029

wiGE 15
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Table 9. Distributjon of the normalized stress Intensity factors
along the crack front in a cylindrical shell containing
ari axial semi-elliptic surface crack and subjected to
internal pressure, x = (x‘+c)/a, R/h = 10, a/h = 1,

Lo/ 0.2 0.4 0.6 0.8

kt kb kt kb kt kb kt l kb
X Ouver Crack, R/h = 10, a/h = 1, c/a = 2
.929 .16 [-.0858 [.124 [-.0555 1.0588 [-. 0226 [-.0067
.828 [.202 -.0813 |[,143 -.0456 |.0755 [~-.0180 |.0246 |-.0038
.688 |.245 |-,0668 |.165 [-.0338 |.0845 |-.0116 |.0277 |-.0012
516 1.291 -.C469 |.190 -.,0222 }.0951 {=-.0062 |.0302 ,0002
.319 [.337 ~.0252 |.214 -,0117 |.106 |{~-.0028 |.0324 .0005
.108 |.381 -, 0044 |.238 y=.0025 [.117 -,0008 |.0352 .000
0 400 .0052 |.248 L0016 |{.121 -,0001 [.0366 |~-.0004

-.108 |.418 L0141 |.258 .0055 |.126 .0006 |.0378 !-.0007

-.319 |.443 .0292 }.272 .0126 |.132 .0025 |.0399 |-.0008

-.516 |.454 0404 |.278 .0190 }.135 .0052 |.0421 [-.0003

-.68 446 0476 |.277 0247 1.134 .0085 {.0429 .0009

-.828 |.419 .0503 |.266 0294 {.131 .0119 |.04MN .0026

~.929 |.359 L0480 |.249 .0327 |.126 0153 1.0396 L0041

Outer Crack, R/h = 10, a/h = 1, c/a = 10
T.929 [.592 | .0022 |.h29 .0013 [.230 | .0005 |.0742 | .0001
.828 |.693 .0020 |.468 L0010 {.24) .0003 |.0G774 .000
.688 [.770 .Q0013 |.503 .0006 |.253 .0001 |,0821 .000
.516 |.827 .0006 |.531 .0002 |.265 .000 .0832 .000
.319 |.865 -.0002 |.549 -,0002 1.273 -.0001 |.082% .000
.108 |.883 -.0003% |.558 -.0005 |.276 -.0002 |.0828 .000
0 .885 -.0013 |.559 -.0006 |.276 -.0002 |.0829 .000

-.108 |.881 -.0016 |.558 -.0008 |.276 -.0002 |{.0827 .000

-.319 |.860 -.0020 |.547 -,0010 }.272 -.0003 !.0822 .000

-.516 |.820 -.0024 |.527 -.0013 |.263 -.0004 |.0827 .000

-.688 |.762 -.0026 |{.498 -.0015 |.251 -.0006 |.0815 .000

-.828 |.684 -.0024 |.463 -.0016 |.239 -.0007 |.0768 |-.0002

-.,929 {.583 -.0013 |.424 -.0017 [.227 |-.0009 !.0736 |-.0002

-41-
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Table 10. Distribution of the normalized stress intensity factors
along the crack front in a cylindrical shell containing
an axial semi-elliptic surface crack and subjected to
internal pressure, x = (x +c)/a, R/h = 10, c/a = 1.1,

kt kb kt kb kt _ kb kt kb

x Inner Crack, R/h = 10, a/h = 3, c/a = 1.1

—.929 [.7T0% .T/h  |.0842 | .123 1.067V | .0633 |.0236 | 01971
.828 |.159 43 1,126 | .0912 |.0811 | .o414 |,0317 | .0106
.688 |.244 .0829 |.191 L0476 |.117 ,0187 |.0439 | .003)
.516 .362 .0169 {.275 .0069 |.162 .0007 |.0581 |-.0006

.319 |.498 |-.0373 [.369 |~.0242 |.212 |-.0104 [.0729 [-.0014
.108 |.629 |=-.0711 |.458 |-.0436 [.258 |-.0166 |.0879 |~.0010
0 .685 |-.0804 |.495 |[-.0494 |.277 |-.0187 |.0944 |-.0010
-.108 {.731 |~-.0850 {.526 |~-.0529 }.293 |[-.0205 |,0993 |-.0014
-.319 |.787 |-.0840 |.563 |~,0547 {.313 |-.0233 |.106 |-,0033
-.516 |.794 |~-.0745 |.566 [~.0517 {.316 |-.0250 {.109 |-.0053
-.688 |.755 |~.,0619 |.538 |-.0466 |.302 |-.0254 {.107 |-.0070
-.828 [.676 |-.0488 |.483 |-.0401 [.277 [-.0241 |.0989 |-.0080
-.929 |.559 |-.0364 {.409 |-.0326 [.243 [-.0217 [.0894 |-.0081

Inner Crack, R/h = 10, a/h = 10, c/a = 1.1
929 [.226 L0168 1.176 0091 |.123 0023 |.0598 [=.0005

.828 |.688 .0001 |.526 .0005 |.350 .0004 |.157 .000
.929 |[.549 .0001 |.407 .00C4 |.266 .0004 |.120 000

.828 |.431 |-.0519 |[.334 |-.0411 |[.226 |{=-.0254 |.103 |-.0094
.688 |.688 |-.0791 |.544 |-.0584 [.366 |-.0332 |.160 |-.0105
.516 |.894 {-.0547 [.726 |-.0410 |.494 ({-.0235 |.212 [-.QO71
.319 |.996 |-.0187 [.835 [-.0163 |.579 [=-.0110 |.244 |-.0039
.108 {1.020 .000 |.874 |-.0024 |.616 |-.0037 |.260 |-.0021
0 1.010 .0029 |.874 .0003 |.619 |[-.0018 [.263 |[-.0015
-.108 [1.010 .0033 |.867 .0012 [.615 |-.0008 |.261 {-.0010
-.319 |.965 .0018 |.822 .0011 |.581 .000 |[.249 [-.0005
-.516 |.898 .0006 |.7u4b .0005 [.518 .000 .227 {~-.0003
-.688 |.805 |-.0003 |.643 |-.0006 [.438 |-.0006 {.195 |[=-.0004

-42-
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Fig. 1 Geometry and notation for a cylindrical shell with a fixed end
which contains a part-through (L<h) or a through (L(x2)=h,
-d<xy<-b) crack.
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Fig. 2 Membrane component of the normalized stress intensity factor
at the end points of an axial through crack in a pressurized
cylinder with a fixed end, v=0.3, a/h = 3.
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Fig: 3

Normalized total stress intensity factor at the maximum pene-
tration point (L=lg, xp=-c) of a semi-elliptic outer crack in a
pressurized cylinder with a fixed end, v = 0.3, Lg/h = 0.4,

a’/h = 1,
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