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A NOTE ON THE CRACKED PLATES REINFORCED BY 

A LINE STIFFENER{*) 

1. Introduction 

O.S. Yahsi and F. Erdogan 
Lehigh University, Bethlehem, PA 18015 

In this note the problem of a cracked plate reinforced by a line 

stiffener is reconsidered. The original solution of the problem was given 

in [1]. A variation of the problem with debonding between the plate and 

the sti ffener near the cracked region was considered in [2]. However, 

the special case of the problem in which the crack tip terminates at the 

stiffener does not appear to have been studied.- In practice the solution 

may be necessary in order to assess the crack arrest effectiveness of the 

stiffener. In this note the problem described in Figure 1 is reformulated, 

the asymptotic stress state near the crack tip terminating at the stiffener 

is examined, and numerical results are given for various stiffness constants. 

2. The Integral Equation 

Consider the plane elasticity problem shown in Figure 1. It is 

assumed that the elastic plane is reinforced by a stiffener which is em­

bedded into the medium. Let the thickness of the stiffener in y-direction 

be sufficiently small so that its in-plane bending stiffness may be 

neglected. Hence, the stiffener may be approximated by a membrane. The 

Airy stress function for the stiffenpd elastic plane may be expressed as 

follows: 

* . This work was supported by NASA-Langley under the Grant NGR 39-007-011 
and by NSF under the Grant CME 78-09737. 
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where Rl , ~ and Sl, ... ,S4 are unknown functions. From Figure lone may 

note that if the loading is symmetric, x=o is a plane of symmetry (which 

is assumed in (1» and the six unknowns of the problem may be determined 

from the following continuity, equilibrium and boundary conditions: 

u(x,+O) - u(x,-O) = 0 O<x<oo 

v(x,+O) v(x,-O) = 0, 0 < x < 00 

0yy(x,+O) - 0yy(x,-O) = 

1 
I[oxy(x,+O) - 0Xy(x,-o)] 

0, O.s.x <00 , 

a2u = - y - 0 < X <00 , ai ' 
0xy (O,y) = 0, _00 < y < 00 , 

0xx(O,y) = f(y), -d<y<-b 

u(O,y) = 0, -oo<y<-d, -b<y<oo 

(1) 

(2) 

( 3) 

(4) 

(5 ) 

(6) 

{7a,b) 

Equation (5) is obtained from the equilibrium of the stiffener (of length 

dx) in x direction by observing that the strain in the stiffener is au/ax. 

The stiffness constant y is, therefore, given by 

(8) 
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where Es is the Young's modulus and As is the cross-sectional area of 

the stiffener corresponding to the unit plate thickness and E is the Young's 

modulus of the plane. Using the expressions 

2 2 _ 2 2 2 
O'xx = a ¢/ay , O'yy - a ¢/ax , O'xy = - a ¢/axay 

and the Hooke's Law, five of the unknowns in (l) may be eliminated by 

the homogeneous conditions (2)-(6) and the sixth may be determined from 

the mixed boundary conditions (7). 

Defining a new unknown function 

a~ u (x, +0) = g (y), -a;, < y < co 

and from (7b) observing that g(y) = 0 for ..ro <y < -d and -b <y <co, after 

some simple manipulations, (7a) may be reduced to 

( 9) 

(10) 

~ f- b g (t:): t + ~ f- b k (y , t) g ( t) d t = ~ f (y) , - d < y < -b , (11 ) 
-d -d 

where 

_ [ Be ( t+y) 13 1 +v 
k(y,t) - 2y yS{l+v){3-v)+4 (1 +-2- tS)[3+v+(l+v)YS]d8 . 

o . 
(12 ) 

If the crack is embedded in the left-hand plane (i .e., if -d < -b < 0), then 

the kernel k(y,t) is bounded for all values of y and t in the closed 

interval [-d,-bJ. However, if the crack tip terminates at the stiffener 

(i.e., if b=O, or c=a, Figure 1), then it may be shown that k(y,t) becomes 

unbounded as y and t go to the end point b=O simultaneously. The singular 

part of k(y,t) may easily be separated by examining the behavior of the 

integrand in (12) for 8~. Thus, it can be shown that 

(13) 
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P+vH1-V~ _1 __ 3(1+v) y + 2(1+v) y2 
l+v 3-v t+y 3-v (t+y)2 3-v (t+y)2' 

In the limiting case of b=O, ks(y,t) and the Cauchy kernel in (11) con­

stitute a generalized Cauchy kernel. 

From (7b) and the definition (10) it is seen that the integral 

(14 ) 

(15 ) 

equation (11) must be solved under the followings;ngle-valuedness condition: 

I
-b 

g(t)dt = 0 . 
-d 

It should be noted that equations (11)-(15) are obtained under 

generalized plane stress assumption. For plane strain E and v should be 

replaced by E/(1-v2) and v/(l-v), respectively. 

For -b < 0 the sol ution of (11) may be obtained by introducing the 

following dimensionless quantities: 

2 d+b 2 d+b 
T) = d-b (y +2)' T = d-b (t +-2-) , 

G(-r) = g(t) , (-1 < (T),T) <1) , 

and by using a standard Gauss-Chebyshev integration procedure [3]. In 

this case the unknown function G(T) is of the following form 

G{-r) = h{-r)/U , 

where h(-r) is a bounded function. After determining h(T), the Mode I 

stress intensity factors at the crack tips may be defined by and calcu-

1 ated from 

-4-
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= 1 im 12(y+b) crxx(O,y), (y>-b), 
y--b 

=-~ lim V'2(-b-y) a~ u(+O,y), (y<-b), 
y--b 

= -i v'(d-b)J2 h(l) ; (19) 

lim v'2(-y-d) cr (O,y) , 
y+-d xx 

(y<-d) , 

= ~ 1 im Y2(y+d) f u( +O,y) , (y>-d), 
y--d y 

= ~ I(d-b)/2 h(-l) • (20) 

In the case of b=O, because of the kernel ks given by (14) the solution 

of the integral equation (11) has no longer square root singularities. 

By introducing the new normalized quantities 

2 2 n = ([y+l, T = ([ t+l, G(L) = g(t), -1 «n,T) <1 , (21) 

assuming G(T) of the form 

and by following the function theoretic method outlined, for example, 

in [3] the characteristic equations of the problem giving a and p may be 

obtained as follows: 

cotiT6 = 0 , 

(22) 

(23) 

(24) 

Equation (23) gives the expected "result of 6 = -1/2 whereas (24) shows that 

a depends on the Poisson's ratio of the plane only .. Again note that (24) 
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is obtained for plane stress; for the plane strain case v should be 

replaced by v/(l-v). With a and B known, (11) may be solved by using a 

Gauss-Jacobi integration for~ula [3J. 

3. Asymptotic Stress Field 

For the plane with a crack terminating at the stiffener in order to 

study the initiation of various modes of fracture growth the asymptotic 

behavior of the stress state around the crack tip x=O, y=O has to be 

investigated. Going back to the basic formulation of the problem various 

stress components around the crack tip may easily be expressed in terms 

of bounded integrals with g(y) defined by (10) as the density function. 

For example, after some relatively simple manipulations the stress 

axx(O,y) for y>O may be expressed as 

(0 ) - E fO [4v 1 + 3(1+v) y + 2(1+v) y2 J9(t)dt 
axx ,y - 2rr _dL(1+v){3-v} t-y 3-v (t_y)2 3-v (t_y)3] 

o 
+ 2.rr(

E
3m..v) L

d
[m(l+V) t~~-(l+V) (t:;)2-t2_~+(3+V) t:y] g(t)dt 

+ Em (m _ 3+V) fO (1 _ m(l+v) t)e-m(t-y)Ei (m(t-y»)g(t)dt , 
2rr{ 3-v) y 1 +v -d 2 

O<y<oo , (25) 

where Ei(x) is the exponential integral and 

4 
m = (1+v)(3-v)y (26) 

If we now observe that (see (21) and (22» 
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and define the sectionally holomorphic function 

o 
F(z) = 1 f .9.Ul dt . rr -d t-z (28) 

we obtain the asymptotic behavior of F(z) near the end point z=O as follows: 

F(z) = Q{Ql /J. + F (z) 
I<f s 1 nrra 0 

where Fo(z) is bounded near z=O. From (28) it is seen that at z =y>O 

F(z) is holomorphic and 

o 
F(y) = 1 f ~ dt = 

'IT -d t-y 

From (25) and (30) it can now be shown that only the terms in the first 

integral in (25) contribute to the stress singularity and by using (30) 

these terms may be expressed as 

o 
1 f y g(t)dt = y d~ F(y) 
rr -d (t_y)2 

= §iQl ya + F (y) 
a I<f sinrra 1 

1,0 y2 g(t)dt = l d
2 

F(y) = 
rr Ld (t_y)3 2 dy2 

a(a-l) §iQl Xa 
+ F (y) 

2 /cf s 1 nrra. 2 9 

where Fl and F2 are bounded near y=O. 

By substituting from (30)-(32) into (25), the leading term of cr xx 
near y=0 is then found to be 

( ) ::: G(O)E [4V l+v ( )Jet 
°xx O,y - 21<f sinrr<l (1+v)(3-v) + 3-v a a+2 y , y>O , 

where G(O) is given in terms of the bounded function heLl as (see (27» 

G(O) = (2/d)a-~ hell 

-7-
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(31 ) 

(32) 

(33) 
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Similarly, other critical stress components and their asymptotic 

values near the crack tip x=O, y=O may be determined as follows: 

( ) = E fO {--L _, __ (l+v)y _ 2(1+v)y2 _ m(l+v)ty 
0yy O,y 2TI(3-v) -d l+v t-y (t_y)2 (t_y)3 (t_y)2 

_ m( 1-vH. _ m
2 
(l-v )yt _ 2m(l-V + ym) (1 _ 1 +v mt) * 

t-y t-y l+v 2 

* e-m(t-y) Ei(m(t-Y»}9(t)dt, 0 <y <00, (35) 

- G(O)E [ 4 _ 13~~ (l]l:J., y>O, 
2 'd . (1+v)(3-v) v 

y SlnTIa. 
(36) 

0yy(x,-O) - EG{O) 2+a. xo. x>O , 
21d si n 'ITa. 3-v 

2 
(38) 

o~ 2 2 
2mxt 0Xy( x, -0) E f 7+2v-v x 2{5-v}xt = 2TI(3-v) -d l+v /+t2 -

(/+t2)2 
-

t 2+x2 

(39) 

2 
( -0) :: EG(O) [ {5-v)a + 7+2v-v ',' xa 0 ° x, iT iTO. ! ,x>. 

xy 41d (3-v)sin '2':1. (3-v)(1+v)cos T~ 
(40) 

From the asymptotic expressions (33), (36), (38) and (40) it is seen 

that stress components near the crack tip has the form 

0 .. :: G{O)E r a f .. (v) = Eh(l)2CL-~(r/d)a. f'.J'(v) 
lJ Id lJ· 

(i,j=x,y), (4') 
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where r is a small distance from the crack tip, and f ij are known 

functions and -1 < Re(a) <0. Thus, the calculated quantity h(1) is the 
. . 

measure of the stress singularity near the crack tip. For b=O in the 

numerical analysis, in addition to k1(-d} defined by (20), the following 

"stress intensity factor" is defined andta bu1ated (Figure 1) 

;;:; -a 1 im yCo y 0xx( O,y} 
y++O 

= Eh(1) r. 4v 
2aasinna U1+v)(3-v) 

We note that for any ~xterna1 load leading to the opening of the 

crack G(O) <0. Since a is also negative, from (33), (36), (38) and (40) 

(42) 

it follows that near the crack tip we have 0xx(O,y) > 0, 0yiO,y) > 0, 

0xx(x,-O) > 0, and 0Xy(x,-O) < 0, which are the intuitively expected results. 

The power of singularity a defined by (27) and calculated from (24) 

is given in Table 1. The stress intensity factors calculated for constant 

crack surface pressure 0xx(O,y) = -00' (-d<y<-b), \I = 0.3, general ized plane 

stress, various crack locations, and various values of the stiffness con-

stant yare given in Table 2. Note that, as expected, the stress intensity 

factors decrease as y increases and as the crack moves closer to the 

stiffener. 
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Table 1. Variation of the power a of the 
stress singularity with Poisson1s ratio. 

a 
\) 

Plane Stress Plane Strain 

0 0 0 
o. 1 -0.1026 -0.1096 
0.2 -0.1547 -0.1743 
0.3 -0.1913 -0.2267 
0.4 -0.2197 -0.2739 
0.5 -0.2429 -0.3196 
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. '-

." 

~ y/a 
0.1 

0.2 
0.25 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
1.0 
1.25 
1.5 
1.75 
2 
2.5 

3 
3.5 

4 

5 
7 

10 

Table 2. The calculated stress fntensity factors: k'(-b} =k1(-b}/cr ra 
. 0 

k' (-d) = k1 (-d)/croTa, k' (0) = kl (O)/croa-a , a = (d-b)/2, c = (d+b)/2, y = EsAs/E, 
v=0.3, a=-0.1913, the case of generalized plane stress . 

k I (O) k'(-b) k'(-d) 

1 1.1 1.5 2.0 10 1 1.1 1.5 2.0 10 

1.197 0.952 0.993 0.998 1.000 0.988 - 0.994 0.998 0.999 1.000 

1.008 0.919 0.988 0.996 1.000 0.981 0.989 0.996 0.998 1.000 

0.953 0.905 0.985 0.995 1.000 0.977 0.986 0.995 0.998 1.000 

0.911 0.894 0.983 0.995 1.000 0.975 0.984 0.994 0.997 1.000 

0.850 0.874 0.978 0.993 1.000 0.970 . 0.981 0.993 0.997 1.000 

0.806 0.858 0.974 0.991 1.000 0.966 0.977 0.992 0.996 1.000 

0.774 0.844 0.971 0.990 1.000 0.962 0.974 0.990 0.995 1.000 

0.748 0.833 0.967 0.989 1.000 0.959 0.972 0.989 0.995 1.000 

0.726 0.823 0.964 0.988 1.000 0.956 0.969 0.988 0.994 1.000 

0.694 0.806 0.959 0.986 1.000 0.951 0.965 0.985 0.993 1.000 

0.664 0.790 0.953 0.983 1.000 0.946 0.960 0.983 0.992 1.000 

0.643 0.777 0.948 0.981 1.000 0.941 0.957 0.981 0.991 1.000 

0.626 0.766 0.944 0.979 1.000 0.938 0.953 0.979 0.990 1.000 

0.613 0.757 0.941 0.978 1.000 0.935 0.951 0.978 0.989 1.000 

0.593 0.744 0.933 0.975 1.000 0.930 0.946 0.975 0.987 1.000 

0.578 0.733 0.930 0.973 1.000 0.925 0.942 0.972 0.986 1.000 

0.567 0.725 0.926 0.971 1.000 0.923 0.939 0.971 0.985 1.000 

0.558 0.718 0.922 0.969 1.000 0.919 0.936 0.969 0.984 1.000 

0.545 0.708 0.917 0.966 1.000 0.915 0.932 0.966 0.982 1.000 

0.529 0.695 0.909 0.962 1.000 0.909 0.926 0.962 0.980 1.000 

0.516 0.683 0.902 0.958 0.999 0.904 0.921 0.958 0.977 0.999 
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Figure 1. The geometry- of a stiffened' pl'ate containing a crack. 
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