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A NOTE ON THE CRACKED PLATES REINFORCED BY
A LINE sTIFFENER(Y)

0.S. Yahsi and F. Erdogan
Lehigh University, Bethlehem, PA 18015

1. Introduction

In this note the problem of a cracked‘p1ate reinforced by a line
stiffener is reconsidered. The original solution of the problem was given
in [1]. A variation of the problem with debondﬁng between the plate and
the stiffener near the cracked region was considered”in [2]. However,
the special case of the problem in which the crack tip terminates at the
stiffener does not appear to have been studied.-- In-practice the solution

may be necessary in order to assess the crack arrest effectiveness of the

stiffener. In this note the problem described in Figure 1 is reformulated,
the asymptotic stress state near the crack tip terminating at the stiffener

is examined, and numerical results are given for various stiffness constants.

2. The Integral Equation

Consider the plane elasticity problem shown in Figure 1. It is
assumed that the elastic plane is reinforced by a stiffener which is em-
bedded into the medium. Let the thickness of the stiffener in y-direction
be sufficiently small so that its in-plane bending stiffness may be
neglected. Hence, the stiffener may be approximated by a membrane. The
Airy stress function for the stiffened elastic plane may be expressed as

follows:

*This work was supported by NASA-Langley under the Grant NGR 39-007-011
and by NSF under the Grant CME 78-09737.
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o(xy) = g [ [R(abry(a)lenIe* eI g
¥ % K[Sﬂﬁ) +y5,(8)1e™® cosgx ds , y >0,

-ZJTTJQ [R, (@) + xRy(o) Je™ ¥ X e=T0 g,

.}

* % r[53(8) +y5,(8)1e™ cosx dg , y <0, (1)
0

where R], R2 and 51,...,54 are unknown functions. From Figure 1 one may
note that if the loading is symmetric, x=0 is a plane of symmetry (which
is assumed in (1)) and the six unknowns of the problem may be determined

from the following continuity, equilibrium and boundary conditions:

u(x,+0) - u(x,-0) = 0, O<x<=», (2)
v(x,+0) - v(x,-0) = 0, O<x<w, (3)
+ - - = oo
cryy(x, 0) cyy(x, 0) 0, O0<x<=, (4)
l[cx (x,+0) - o_ (x,-0)] = - ﬁ 0<x<ow (5)
E-"xy'™? xy'™? Y 3)(2 ? - ’
cxy(O,y) = 0, -w<y<o, (6)
0,,(0sy) = fly), -d<y<-b,
(7a,b)
u(G,y) = 0, -w<y<-d, -b<y<=,
Equation (5) is obtained from the equilibrium of the stiffener (of length
dx) in x direction by observing that the strain in the stiffener is 3u/ax.
The stiffness constant y is, therefore, given by
y = EsAs/E (8)
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where ES is the Young's modulus and AS is the cross-sectional area of
the stiffener cokresponding to the unit plate thickness and E is the Young's

modulus of the plane. Using the expressions

2.2 _ 2.2 o2
Iy = 9 &/3y” cyy 3 ¢/ax™ ny = - 3" ¢/ oxay (9)

and the Hooke's Law, five.of the'unknowns in (1) may bg eliminated by
the homogeneous conditions (2)-(6) and the sixth may be determined from
the mixed boundary conditions (7).:

Defining a new unknown function

3
WU(xﬁo) =g(y) , —=<y<w (10)

and from (7b) observing that g(y) = O'for -o<y<=-d and -b<y<wo, after

some simple manipulations, (7a) may be reduced to

-b -b
%I-d tt-‘ydt +%f-d k(y,t)g(t)dt = 'E‘f(.Y), -d<y<-b, (11)
where
(t+y)8 .
(oth = 2 f: AT (47 1) [3rvH(i)yalds . (12)

If the crack is embedded in the left-hand plane (i.e., if -d<-b<0), then
the kernel k(y,t) is bounded for all values of y and t in the closed
interval [-d,-b]. However, if the crack tip terminates at the stiffener
(i.e., if b=0, or c=a, Figure 1), then it may be shown that k(y,t) becomes
unbounded as y and t go to the end point b=0 simultaneously. The singular
pért of k(y,t) may easily be separated by examining the behavior of the

integrand in (12) for B+=. Thus, it can be shown that

k(yst) = k(yst) + kely,t) (13)
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‘ 2
Kk (y,t) = - 3+tv)(1-v) 1 _3(I+v) _y . 2(1+v) _y , (14)

+v)(3-v) t+y 3-v (t+y)2 3-v (t+y)2

kf(y,t)

8 3t (t+y)p [1+tB(1+v)/2 |
T3~y RH\\:”B) ) Y[(1++v)((3t\i)))s+]4 dg . (15)

In the 1imiting case of b=0, ks(y,t) and the Cauchy kernel in (11) con-
stitute a generalized Cauchy kernel.
From (7b) and the definition (10) it is seen that the integral

equation (11) must be solved under the following single-valuedness condition:
-b ,
J . g(t)dt = 0 . (16)

It should be noted that equations (11)-(15) are obtained under
generalized plane stress assumption. For plane strain E and v should be
replaced by E/(]-vz) and v/(1-v), respectively.

For -b <0 the solution of (11) may be obtained by introducing the

following dimensionless quantities:

d+b 2 (g4 gD

gy W) s Teg

6(t) = o(t) » (-1 <(n.7) <1) , (17)

and by using a standard Gauss-Chebyshev integration procedure [3]. In

this case the unknown function G(t) is of the following form
G(t) = h(r)/%i-r s (18)

where h(t) is a bounded function. After determining h(t), the Mode I
stress intensity factors at the crack tips may be defined by and calcu-

‘lated from




ky(-b) = Tlim /2{y*b] o (0,y) , (y>-b) ,
y+-b
="‘" ].”nb ’/2( 'y; u(+09.Y) » (y<'b) [
y—*—
= -§-¢(3-5)72 h(1) ; , (19)

k](-d) = lim /2(-y-d) oxx(O,y) s (y<-d) ,
y+-d

Tim V?‘y'f’d’ 3y U('*'O,.Y) s (y>'d) s
y—d

/(d-b}/2 h(-1) . ' (20)

~Njm r\)lrn

In the case of b=0, because of the kernel ks given by (14) the solution
of the integral equation (11) has no longer square root singularities.

By introducing the new normalized quantities

n= _Y+] ’ T =%t+] s G(T) = g(t) ’ -1<(H,T)<] ’ (2])

alr

assuming G(t) of the form
6(t) = h(1)(1-1)*(1+0)® , (-1 <Re(a,8) <0) , (22)

and by following the function theoretic method outlined, for example,
in [3] the characteristic equations of the problem giving o and 3 may be
obtained as follows:

cotad = 0 , (23)

COS‘ITO."'—(O. +2a) - g':: };: = 0. (24)

Equation (23) gives the expected result of 3=-1/2 whereas (24) shows that
a depends on the Poisson's ratio of the plane only. . Again note that (24)
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is obtained for plane stress; for the plane strain case v should be
replaced by v/(1-v). With o and 8 known, (11) may be solved by using a

Gauss-Jdacobi integration formula [3].

3. Asymptotic Stress Field

For the plane with a crack terminating at the stiffener in order to
study the initiation of various modes of fracture growth the asymptotic
behavior of the stress state around the crack tip x=0, y=0 has to be
investigated. Going back to the basic formulation of the problem various
stress components around the crack tip may easily be expressed in terms
of bounded integrals with g(y) defined by (10) as the density function.
For example, after some relatively simple manipulations the stress
cxx(o,y) for y>0 may be e%pressed as

0 ) |
- E 4 1 3(1 2(1
GXX(O"y) T 27 f_d[(]-f\))\()3-v) t-y + (3.:'3)) A + (3.+\:)) ! 3}9 (t)dt

(t-y)? (t-y)

+ Em fo [m('l+v)-—-&-(1+v) —-Yt—z--—z-‘L+(3+v) L] (t)dt
2n(3-v) -d t-y (t-y) t-y t-y | 9

Em (my ; 3_*&) I:(‘ - m1) t)e'm(t-y)Ei (m(t-y))g(t)at ,

" Zm(Ev) T+
O<y<=, (25)
where Ei(x) is the exponential integral and
= T (26)
. If we now observe that (see (21) and (22))
6(8) = h(x)(1-0)%(100) ™ - BE(-)%(tr) 7%, (0>a>-1) (2])
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and define the sectionally holomorphic function

0 | -
_ 1[0 gt , -
fz) = 1 f_d (t) g (28)
we obtain the asymptotic behavior of F(z) near the end point z=0 as follows:
_ 6(0) z* '
F(2) /a sinma * Fo(z) (29)

where Fo(z) is bounded near z=0. From (28) it is seen that at z=y>0

F(z) is holomorphic and

0 xé N
Fly) = _.:l?f_ g;cg-_tglldt ) %‘SlSinﬂ‘u.'. Fo('Y) ) (30)

From (25) and (30) it can now be shown that only the terms in the first
integral in (25) contribute to the stress singularity and by using (30)

these terms may be expressed as

0 o
1 _ d _ G(0
%f_th-yy?W)dt LA A s
2 2 2 : a
lf‘JL— tydt = L4y = 2le) 8O ¥ Lp oy (32
Ty (;_y)3 g(t) 2 42 (y) 2 Jg sinma 2(¥) (32)

where F] and F2 are bounded near y=0.
By substituting from (30)-(32) into (25), the leading term of Tyx

near y=0 is then found to be

= G(O)E 4v 1+v a
Oxx(o’y) " 2/d sinma [(]+v)(3-v) * 3 a(a+2{]y > 0, (33)

where G(0) is given in terms of the bounded function h(t) as (see (27))

6(0) = (2/_&1)0“*5 h(1) . | (34)
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Similarly, other critical stress components and their asymptotic

values near the crack tip x=0, y=0 may be determined as follows:

. . 2
o (0,y) = E {4 1 _ (w)y _2(0+v)y" _ m(1+v)ty
» T | e (0% (t)° T (e)?

_m(1-v)t _ mz(l—v)yt Zm(] V+ym)( _b’_ mt) *

t-y t-y T1+v

« e M(t-y) Ei(m(t-y))}g(t)dt » O<y<w

G(0)E
Yy 2/d sinma

o (x,-0) = —2E fo{ t tx2 _m(1-v) [‘ £2
yy m(3-v q t2+x2 (t2+ 2)2 4 Lt2+x2

Q
—
o

<
12

1+ 2
iy - S e o

+ (nt - 755) re S 08 }g(t)'dt . 0<x<a,

= EG(O) 2+a _a
g (x,-0) = X, x>0,
¥y 2vd sin 12% 3-v
o (x,-0) = E [0 {7+2\)-\)2 X AS-v)th _ _2mxt
Xy 2”(3'\)T T1+v X2+t2 (X2+t2)2 t2+X2
+ [2m2t—4m(1+v)] Jﬁo g—;’:n?ﬁ ds} g{t)dt , O<x<=,
0 ,
~ EG(0) (5-v)a 7+2\)-v2 T oa
c'xy(x,-o) = [ — + m: X, x>0 .
. 4v/d L(3-v)sin = (3-v)(1+v)cos o

From the asymptotic expressions (33), (36), (38) and (40) it is seen

that stress components near the crack tip has the form

o = M;ﬂf ) = En(1)2% % r/d)® £, (W), (i,5=x,y) ,
J /a | 1
-8~

(35)

(36)

(39)

(40)

(41)




where r is a small distance from the crack tip, and fij are knowﬁ
functions and -1 <Re(a) <0. Thus, the calculated quantity h(1) is the
measure of the stress singu]arity near'the crack tip. For b=0 in the
numerical analysis, in addition to k](—d) defined by (20), the following

"stress intensity factor" is defined andta bulated (Figure 1)

ky(0) lim /2 y™ o, (0,y)

y->-+0
Eh(1)
2a%sinma

[ty + B ez L asf (42)

We note that for any external load leading to the opening of the
crack G(O) <0. Since a is also negative, from (33), (36), (38) and (40)
it follows that near the crack tip we have cxx(o,y) >0, oyy(O,y) >0,
oxx(x,-O) >0, and cxy(x,-o) <0, which are the intuitively expected results.
The power of singularity o defined by (27) and calculated from (24)
is given in Table 1. The stress intensity factors calculated for constant
crack surface pressure cxx(o,y)'=-co, (-d<y<-b), v=0.3, generalized plane
stress, various crack locations, and various values of the stiffness con-
stant vy are given in Table 2. Note that, as expected, the stress intensity
factors decrease as y increases and as the crack moves closer to the

stiffener.
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Table 1. Variation of the power o of the
stress singularity with Poisson's ratio.

a

Y Plane Stress | Plane Strain
0 0 0

0.1 -0.1026 -0.1096
0.2 -0.1547 -0.1743
0.3 -0.1913 -0.2267
0.4 -0.2197 -0.2739
0.5 -0.2429 -0.3196
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Table 2. The calculated stress intensity factors: .k'(-b)==k1(4b)/coJ5

k'(-d) =k (-d)/o,a, k'(0) =k1(0)/00a'°‘, a=(d-b)/2, c=(d+b)/2, y=E.A/E,
v=0.3, 0=-0.1913, the case of generalized plane stress.

| ﬁt ”k-(0).

k'(-b) k'(-d)
c/a ‘ :
1 1.1 1.5 2.0 10 1 1.1 1.5 2.0 10
y/a |
0.1 { 1.197 | 0.952 | 0.993 | 0.998 [ 1.000 | 0.988 | 0.994 | 0.998 | 0.999 | 1.000
0.2 | 1.008 | 0.919 | 0.988 | 0.996 | 1.000 | 0.981 | 0.989 [ 0.996 | 0.998 | 1.000
0.25{ 0.953 | 0.905 | 0.985 | 0.995 | 1.000 | 0.977 | 0.986 0.995 { 0.998 | 1.000
0.3 1 0.911 | 0.894 | 0.983 | 0.995 | 1.000 | 0.975 | 0.984 | 0.994 | 0.997 | 1.000
0.4 | 0.850 | 0.874 | 0.978 | 0.993 | 1.000 { 0.970 1 0.981 | 0.993 { 0.997 | 1.000
0.5 { 0.806 { 0.858 | 0.974 | 0.991 | 1.000 | 0.966 | 0.977 |} 0.992 | 0.996 ] 1.000
0.6 | 0.774 | 0.844 | 0.971 | 0.990 | 1.000 { 0.962 | 0.974 | 0.990 | 0.995 | 1.000
0.7 ] 0.748 | 0.833 | 0.967 | 0.989 | 1.000 | 0.959 | 0.972 | 0.989 | 0.995 | 1.000
0.8 | 0.726 | 0.823 | 0.964 { 0.988 | 1.000 | 0.956 | 0.969 | 0.988 | 0.994 { 1.000
1.0 | 0.694 | 0.806 | 0.959 | 0.986 | 1.000 | 0.951 | 0.965 | 0.985 | 0.993 | 1.000
1.25} 0.664 | 0.790 | 0.953 | 0.983 | 1.000 | 0.946 | 0.960 | 0.983 | 0.992 | 1.000
1.5 1 0.643 | 0.777 | 0.948 | 0.981 | 1.000 | 0.941 | 0.957 | 0.981 | 0.991 | 1.000
1.75{ 0.626 | 0.766 | 0.944 | 0.979 | 1.000 [ 0.938 | 0.953 | 0.979 | 0.990 | 1.000
2 0.613 | 0.757 | 0.941 | 0.978 | 1.000 | 0.935 | 0.951 | 0.978 | 0.989 | 1.000
2.5 | 0.593 | 0.744 | 0.933 | 0.975 | 1.000 | 0.930 } 0.946 | 0.975 | 0.987 | 1.000
3 0.578 | 0.733 | 0.930 | 0.973 | 1.000 | 0.925 | 0.942 | 0.972 | 0.986 | 1.000
3.5} 0.567 | 0.725 | 0.926 | 0.971 | 1.000 | 0.923 | 0.939 | 0.971 { 0.985 | 1.000
4 0.558 | 0.718 | 0.922 | 0.969 | 1.000 | 0.919 | 0.936 | 0.969 | 0.984 | 1.000
5 0.545 { 0.708 | 0.917 | 0.966 | 1.000 | 0.915 | 0.932 | 0.966 { 0.982 | 1.000
7 0.529 | 0.695 | 0.909 | 0.962 | 1.000 | 0.909 | 0.926 | 0.962 | 0.980 | 1.000
10 0.516 | 0.683 | 0.902 | 0.958 | 0.999 | 0.904 | 0.921 | 0.958 | 0.977 | 0.999
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Figure 1. The geometry of a stiffened plate containing a crack.
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