41 research outputs found

    Physical activity and clustered cardiovascular disease risk factors in young children: a cross-sectional study (the IDEFICS study)

    Get PDF
    <p>Background The relevance of physical activity (PA) for combating cardiovascular disease (CVD) risk in children has been highlighted, but to date there has been no large-scale study analyzing that association in children aged ≤9 years of age. This study sought to evaluate the associations between objectively-measured PA and clustered CVD risk factors in a large sample of European children, and to provide evidence for gender-specific recommendations of PA.</p> <p>Methods Cross-sectional data from a longitudinal study in 16,224 children aged 2 to 9 were collected. Of these, 3,120 (1,016 between 2 to 6 years, 2,104 between 6 to 9 years) had sufficient data for inclusion in the current analyses. Two different age-specific and gender-specific clustered CVD risk scores associated with PA were determined. First, a CVD risk factor (CRF) continuous score was computed using the following variables: systolic blood pressure (SBP), total triglycerides (TG), total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-c) ratio, homeostasis model assessment of insulin resistance (HOMA-IR), and sum of two skinfolds (score CRFs). Secondly, another CVD risk score was obtained for older children containing the score CRFs + the cardiorespiratory fitness variable (termed score CRFs + fit). Data used in the current analysis were derived from the IDEFICS (‘Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS’) study.</p> <p>Results In boys <6 years, the odds ratios (OR) for CVD risk were elevated in the least active quintile of PA (OR: 2.58) compared with the most active quintile as well as the second quintile for vigorous PA (OR: 2.91). Compared with the most active quintile, older children in the first, second and third quintiles had OR for CVD risk score CRFs + fit ranging from OR 2.69 to 5.40 in boys, and from OR 2.85 to 7.05 in girls.</p> <p>Conclusions PA is important to protect against clustering of CVD risk factors in young children, being more consistent in those older than 6 years. Healthcare professionals should recommend around 60 and 85 min/day of moderate-to-vigorous PA, including 20 min/day of vigorous PA.</p&gt

    Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm

    Get PDF
    We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC

    Physical activity, obesity and cardiometabolic risk factors in 9- to 10-year-old UK children of white European, South Asian and black African-Caribbean origin: the Child Heart And health Study in England (CHASE)

    Get PDF
    Physical inactivity is implicated in unfavourable patterns of obesity and cardiometabolic risk in childhood. However, few studies have quantified these associations using objective physical activity measurements in children from different ethnic groups. We examined these associations in UK children of South Asian, black African-Caribbean and white European origin. This was a cross-sectional study of 2,049 primary school children in three UK cities, who had standardised anthropometric measurements, provided fasting blood samples and wore activity monitors for up to 7 days. Data were analysed using multilevel linear regression and allowing for measurement error. Overall physical activity levels showed strong inverse graded associations with adiposity markers (particularly sum of skinfold thicknesses), fasting insulin, HOMA insulin resistance, triacylglycerol and C-reactive protein; for an increase of 100 counts of physical activity per min of registered time, levels of these factors were 12.2% (95% CI 10.2-14.1%), 10.2% (95% CI 7.5-12.8%), 10.2% (95% CI 7.5-12.8%), 5.8% (95% CI 4.0-7.5%) and 19.2% (95% CI 13.9-24.2%) lower, respectively. Similar increments in physical activity levels were associated with lower diastolic blood pressure (1.0 mmHg, 95% CI 0.6-1.5 mmHg) and LDL-cholesterol (0.04 mmol/l, 95% CI 0.01-0.07 mmol/l), and higher HDL-cholesterol (0.02 mmol/l, 95% CI 0.01-0.04 mmol/l). Moreover, associations were broadly similar in strength in all ethnic groups. All associations between physical activity and cardiometabolic risk factors were reduced (albeit variably) after adjustment for adiposity. Objectively measured physical activity correlates at least as well with obesity and cardiometabolic risk factors in South Asian and African-Caribbean children as in white European children, suggesting that efforts to increase activity levels in such groups would have equally beneficial effect

    Chaotic Signatures of Heart Rate Variability and Its Power Spectrum in Health, Aging and Heart Failure

    Get PDF
    A paradox regarding the classic power spectral analysis of heart rate variability (HRV) is whether the characteristic high- (HF) and low-frequency (LF) spectral peaks represent stochastic or chaotic phenomena. Resolution of this fundamental issue is key to unraveling the mechanisms of HRV, which is critical to its proper use as a noninvasive marker for cardiac mortality risk assessment and stratification in congestive heart failure (CHF) and other cardiac dysfunctions. However, conventional techniques of nonlinear time series analysis generally lack sufficient sensitivity, specificity and robustness to discriminate chaos from random noise, much less quantify the chaos level. Here, we apply a ‘litmus test’ for heartbeat chaos based on a novel noise titration assay which affords a robust, specific, time-resolved and quantitative measure of the relative chaos level. Noise titration of running short-segment Holter tachograms from healthy subjects revealed circadian-dependent (or sleep/wake-dependent) heartbeat chaos that was linked to the HF component (respiratory sinus arrhythmia). The relative ‘HF chaos’ levels were similar in young and elderly subjects despite proportional age-related decreases in HF and LF power. In contrast, the near-regular heartbeat in CHF patients was primarily nonchaotic except punctuated by undetected ectopic beats and other abnormal beats, causing transient chaos. Such profound circadian-, age- and CHF-dependent changes in the chaotic and spectral characteristics of HRV were accompanied by little changes in approximate entropy, a measure of signal irregularity. The salient chaotic signatures of HRV in these subject groups reveal distinct autonomic, cardiac, respiratory and circadian/sleep-wake mechanisms that distinguish health and aging from CHF

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    Cardiorespiratory fitness and adiposity in metabolically healthy overweight and obese youth

    No full text
    OBJECTIVE: Controversy exists surrounding the contribution of fitness and adiposity as determinants of the Metabolically Healthy Overweight (MHO) phenotype in youth. This study investigated the independent contribution of cardiorespiratory fitness and adiposity to the MHO phenotype among overweight and obese youth. METHODS: This cross-sectional study included 108 overweight and obese youth classified as MHO (no cardiometabolic risk factors) or non-MHO ($1 cardiometabolic risk factor), based on age- and genderspecific cut-points for fasting glucose, triglycerides, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and hepatic steatosis. RESULTS: Twenty-five percent of overweight and obese youth were classified as MHO. This phenotype was associated with lower BMI z-score (BMI z-score: 1.8 \ub1 0.3 vs 2.1 \ub1 0.4, P = .02) and waist circumference (99.7 \ub1 13.2 vs 106.1 \ub1 13.7 cm, P = .04) compared with non-MHO youth. When matched for fitness level and stratified by BMI z-score (1.6 \ub1 0.3 vs 2.4 \ub1 0.2), the prevalence of MHO was fourfold higher in the low BMI z-score group (27% vs 7%; P = .03). Multiple logistic regression analyses revealed that the best predictor of MHO was the absence of hepatic steatosis even after adjusting for waist circumference (odds ratio 0.57, 95% confidence interval 0.40- 0.80) or BMI z-score (odds ratio 0.59, 95% confidence interval 0.43- 0.80). CONCLUSIONS: The MHO phenotype was present in 25% of overweight and obese youth and is strongly associated with lower levels of adiposity, and the absence of hepatic steatosis, but not with cardiorespiratory fitness. Pediatrics 2013;132:e85-e92. Copyright \ua9 2013 by the American Academy of Pediatrics.Peer reviewed: YesNRC publication: Ye

    ECCE1: the first of a series of anthropomimetic musculoskeletal upper torsos.

    No full text
    The human body was not designed by engineers and the way in which it is built poses enormous control problems. Its complexity challenges the ability of classical control theory to explain human movement as well as the development of human motor skills. It is our working hypothesis that the engineering paradigm for building robots places severe limitations on the kinds of interactions such robots can engage in, on the knowledge they can acquire of their environment, and therefore on the nature of their cognitive engagement with the environment. This paper describes the design of an anthropomimetic humanoid upper torso, ECCE1, built in the context of the ECCEROBOT project. The goal of the project is to use this platform to test hypotheses about human motion as well as to compare its performance with that of humans, whether at the mechanical, behavioural or cognitive level
    corecore