84 research outputs found

    Controlled thermodynamics for tunable electron doping of graphene on Ir(111)

    Get PDF
    The electronic properties and surface structures of K-doped graphene supported on Ir(111) are characterized as a function of temperature and coverage by combining low-energy electron diffraction, angle-resolved photoemission spectroscopy, and density functional theory (DFT) calculations. Deposition of K on graphene at room temperature (RT) yields a stable (√3 × √3) R30° surface structure having an intrinsic electron doping that shifts the graphene Dirac point by ED = 1.30 eV below the Fermi level. Keeping the graphene substrate at 80 K during deposition generates instead a (2 × 2) phase, which is stable until full monolayer coverage. Further deposition of K followed by RT annealing develops a double-layer K-doped graphene that effectively doubles the K coverage and the related charge transfer, as well as maximizing the doping level (ED = 1.61 eV). The measured electron doping and the surface reconstructions are rationalized by DFT calculations. These indicate a large thermodynamic driving force for K intercalation below the graphene layer. The electron doping and Dirac point shifts calculated for the different structures are in agreement with the experimental measurements. In particular, the K4s bands are shown to be sensitive to both the K intercalation and periodicity and are therefore suggested as a fingerprint for the location and ordering of the K dopants

    Divergent roles for Eph and Ephrin in Avian Cranial Neural Crest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As in other vertebrates, avian hindbrain neural crest migrates in streams to specific branchial arches. Signalling from Eph receptors and ephrins has been proposed to provide a molecular mechanism that guides the cells restricting them to streams. In mice and frogs, cranial neural crest express a combination of Eph receptors and ephrins that appear to exclude cells from adjacent tissues by forward and reverse signalling. The objective of this study was to provide comparative data on the distribution and function of Eph receptors and ephrins in avian embryos.</p> <p>Results</p> <p>To distinguish neural crest from bordering ectoderm and head mesenchyme, we have co-labelled embryos for Eph or ephrin RNA and a neural crest marker protein. Throughout their migration avian cranial neural crest cells express EphA3, EphA4, EphA7, EphB1, and EphB3 and move along pathways bordered by non-neural crest cells expressing ephrin-B1. In addition, avian cranial neural crest cells express ephrin-B2 and migrate along pathways bordered by non-neural crest cells expressing EphB2. Thus, the distribution of avian Eph receptors and ephrins differs from those reported in other vertebrates. In stripe assays when explanted cranial neural crest were given the choice between FN or FN plus clustered ephrin-B1 or EphB2 fusion protein, the cells strongly localize to lanes containing only FN. This preference is mitigated in the presence of soluble ephrin-B1 or EphB2 fusion protein.</p> <p>Conclusion</p> <p>These findings show that avian cranial neural crest use Eph and ephrin receptors as other vertebrates in guiding migration. However, the Eph receptors are expressed in different combinations by neural crest destined for each branchial arch and ephrin-B1 and ephrin-B2 appear to have opposite roles to those reported to guide cranial neural crest migration in mice. Unlike many of the signalling, specification, and effector pathways of neural crest, the roles of Eph receptors and ephrins have not been rigorously conserved. This suggests diversification of receptor and ligand expression is less constrained, possibly by promiscuous binding and use of common downstream pathways.</p

    De novo domestication of wild tomato using genome editing

    Get PDF
    Breeding of crops over millennia for yield and productivity1 has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost2. We devised a CRISPR–Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants

    Endoreplication Controls Cell Fate Maintenance

    Get PDF
    Cell-fate specification is typically thought to precede and determine cell-cycle regulation during differentiation. Here we show that endoreplication, also known as endoreduplication, a specialized cell-cycle variant often associated with cell differentiation but also frequently occurring in malignant cells, plays a role in maintaining cell fate. For our study we have used Arabidopsis trichomes as a model system and have manipulated endoreplication levels via mutants of cell-cycle regulators and overexpression of cell-cycle inhibitors under a trichome-specific promoter. Strikingly, a reduction of endoreplication resulted in reduced trichome numbers and caused trichomes to lose their identity. Live observations of young Arabidopsis leaves revealed that dedifferentiating trichomes re-entered mitosis and were re-integrated into the epidermal pavement-cell layer, acquiring the typical characteristics of the surrounding epidermal cells. Conversely, when we promoted endoreplication in glabrous patterning mutants, trichome fate could be restored, demonstrating that endoreplication is an important determinant of cell identity. Our data lead to a new model of cell-fate control and tissue integrity during development by revealing a cell-fate quality control system at the tissue level

    Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana

    Get PDF
    Mg-chelatase H subunit (CHLH) is a multifunctional protein involved in chlorophyll synthesis, plastid-to-nucleus retrograde signaling, and ABA perception. However, whether CHLH acts as an actual ABA receptor remains controversial. Here we present evidence that CHLH affects ABA signaling in stomatal guard cells but is not itself an ABA receptor. We screened ethyl methanesulfonate-treated Arabidopsis thaliana plants with a focus on stomatal aperture-dependent water loss in detached leaves and isolated a rapid transpiration in detached leaves 1 (rtl1) mutant that we identified as a novel missense mutant of CHLH. The rtl1 and CHLH RNAi plants showed phenotypes in which stomatal movements were insensitive to ABA, while the rtl1 phenotype showed normal sensitivity to ABA with respect to seed germination and root growth. ABA-binding analyses using 3H-labeled ABA revealed that recombinant CHLH did not bind ABA, but recombinant pyrabactin resistance 1, a reliable ABA receptor used as a control, showed specific binding. Moreover, we found that the rtl1 mutant showed ABA-induced stomatal closure when a high concentration of extracellular Ca2+ was present and that a knockout mutant of Mg-chelatase I subunit (chli1) showed the same ABA-insensitive phenotype as rtl1. These results suggest that the Mg-chelatase complex as a whole affects the ABA-signaling pathway for stomatal movements

    Meltrin β/ADAM19 Interacting with EphA4 in Developing Neural Cells Participates in Formation of the Neuromuscular Junction

    Get PDF
    BACKGROUND: Development of the neuromuscular junction (NMJ) is initiated by the formation of postsynaptic specializations in the central zones of muscles, followed by the arrival of motor nerve terminals opposite the postsynaptic regions. The post- and presynaptic components are then stabilized and modified to form mature synapses. Roles of ADAM (A Disintegrin And Metalloprotease) family proteins in the formation of the NMJ have not been reported previously. PRINCIPAL FINDINGS: We report here that Meltrin beta, ADAM19, participates in the formation of the NMJ. The zone of acetylcholine receptor alpha mRNA distribution was broader and excess sprouting of motor nerve terminals was more prominent in meltrin beta-deficient than in wild-type embryonic diaphragms. A microarray analysis revealed that the preferential distribution of ephrin-A5 mRNA in the synaptic region of muscles was aberrant in the meltrin beta-deficient muscles. Excess sprouting of motor nerve terminals was also found in ephrin-A5 knockout mice, which lead us to investigate a possible link between Meltrin beta and ephrin-A5-Eph signaling in the development of the NMJ. Meltrin beta and EphA4 interacted with each other in developing motor neurons, and both of these proteins localized in the NMJ. Coexpression of Meltrin beta and EphA4 strongly blocked vesicular internalization of ephrin-A5-EphA4 complexes without requiring the protease activity of Meltrin beta, suggesting a regulatory role of Meltrin beta in ephrin-A5-Eph signaling. CONCLUSION: Meltrin beta plays a regulatory role in formation of the NMJ. The endocytosis of ephrin-Eph complexes is required for efficient contact-dependent repulsion between ephrin and Eph. We propose that Meltrin beta stabilizes the interaction between ephrin-A5 and EphA4 by regulating endocytosis of the ephrinA5-EphA complex negatively, which would contribute to the fine-tuning of the NMJ during development

    An enigma in the genetic responses of plants to salt stresses

    Get PDF
    Soil salinity is one of the main factors restricting crop production throughout the world. Various salt tolerance traits and the genes controlling these traits are responsible for coping with salinity stress in plants. These coping mechanisms include osmotic tolerance, ion exclusion, and tissue tolerance. Plants exposed to salinity stress sense the stress conditions, convey specific stimuli signals, and initiate responses against stress through the activation of tolerance mechanisms that include multiple genes and pathways. Advances in our understanding of the genetic responses of plants to salinity and their connections with yield improvement are essential for attaining sustainable agriculture. Although a wide range of studies have been conducted that demonstrate genetic variations in response to salinity stress, numerous questions need to be answered to fully understand plant tolerance to salt stress. This chapter provides an overview of previous studies on the genetic control of salinity stress in plants, including signaling, tolerance mechanisms, and the genes, pathways, and epigenetic regulators necessary for plant salinity tolerance
    corecore