1,365 research outputs found

    Huge First-Order Metamagnetic Transition in the Paramagnetic Heavy-Fermion System CeTiGe

    Full text link
    We report on the observation of large, step-like anomalies in the magnetization (ΔM=0.74\Delta M = 0.74\,μB\mu_{\rm B}/Ce), in the magnetostriction (Δl/l0=2.0103\Delta l/l_{0} = 2.0 \cdot 10^{-3}), and in the magnetoresistance in polycrystals of the paramagnetic heavy-fermion system CeTiGe at a critical magnetic field μ0Hc\mu_0 H_c \approx 12.5\,T at low temperatures. The size of these anomalies is much larger than those reported for the prototypical heavy-fermion metamagnet CeRu2_2Si2_2. Furthermore, hysteresis between increasing and decreasing field data indicate a real thermodynamic, first-order type of phase transition, in contrast to the crossover reported for CeRu2_2Si2_2. Analysis of the resistivity data shows a pronounced decrease of the electronic quasiparticle mass across HcH_c. These results establish CeTiGe as a new metamagnetic Kondo-lattice system, with an exceptionally large, metamagnetic transition of first-order type at a moderate field.Comment: 5 pages, 4 figure

    Circulating vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans

    Get PDF
    Objective: To study the association of vaspin with glucose metabolism. Design: Cross-sectional and intervention study. Subjects and methods: The association of serum vaspin with metabolic and anthropometric characteristics was investigated in 108 volunteers. Euglycemic–hyperinsulinemic clamps (EHC) were performed in 83 of the participants. Changes of circulating vaspin levels were additionally studied in a crossover study using 300 min EHC with lipid versus saline infusion (n=10). Results: Neither glucose tolerance status nor insulin sensitivity, both as measured using EHCs and using homeostasis model assessment for insulin resistance (HOMA-IR), was significantly associated with serum vaspin in the cross-sectional study. Furthermore, there was no effect of short-term lipid-induced insulin resistance due to a 300 min intravenous lipid challenge on circulating vaspin. However, circulating vaspin levels were significantly elevated in women using oral contraceptives (OC), both compared to women without OC intake (1.17±0.26 vs 0.52±0.09 ng/ml, P=0.02) and males (1.17±0.26 vs 0.29±0.04 ng/ml, P=0.01). After exclusion of OC using females and stratification according to body mass index (BMI), a significant sexual dimorphism in subjects with a BMI <25 kg/m2 was observed (males 0.21±0.04 ng/ml versus females 0.70±0.16 ng/ml, P=0.009). Conclusion: Our results support the existence of a sexual dimorphism regarding circulating vaspin. The lack of an association of serum vaspin with HOMA-IR and M value indicates, however, no major role for vaspin concerning insulin sensitivity in nondiabetic humans

    Targets for the MalI repressor at the divergent Escherichia coliK-12malX-malI promoters

    Get PDF
    Random mutagenesis has been used to identify the target DNA sites for the MalI repressor at the divergent Escherichia coli K-12 malX-malI promoters. The malX promoter is repressed by MalI binding to a DNA site located from position -24 to position -9, upstream of the malX promoter transcript start. The malI promoter is repressed by MalI binding from position +3 to position +18, downstream of the malI transcript start. MalI binding at the malI promoter target is not required for repression of the malX promoter. Similarly, MalI binding at the malX promoter target is not required for repression of the malI. Although the malX and malI promoters are regulated by a single DNA site for cyclic AMP receptor protein, they function independently and each is repressed by MalI binding to a different independent operator site

    Low temperature thermodynamic properties near the field-induced quantum critical point in DTN

    Full text link
    We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field Hc12H_{c1} \approx 2\,T in DTN . A T3/2T^{3/2} behavior in the specific heat and magnetization is observed at very low temperatures at H=Hc1H=H_{c1} that is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at Hc1H_{c1} shows minor deviations from the expected T1/2T^{1/2} behavior. Our experimental study is complemented by analytical calculations and Quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gr\"{u}neisen parameters that are ideal quantities to identify QCPs. Both parameters diverge at Hc1H_{c1} with the expected T1T^{-1} power law. By using the Ehrenfest relations at the second order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.Comment: 11 paged, 10 figures, submitted to PR

    Fast parallel algorithms for a broad class of nonlinear variational diffusion approaches

    Get PDF
    Variational segmentation and nonlinear diffusion approaches have been very active research areas in the fields of image processing and computer vision during the last years. In the present paper, we review recent advances in the development of efficient numerical algorithms for these approaches. The performance of parallel implement at ions of these algorithms on general-purpose hardware is assessed. A mathematically clear connection between variational models and nonlinear diffusion filters is presented that allows to interpret one approach as an approximation of the other, and vice versa. Numerical results confirm that, depending on the parametrization, this approximation can be made quite accurate. Our results provide a perspective for uniform implement at ions of both nonlinear variational models and diffusion filters on parallel architectures

    Field-induced Bose-Einstein Condensation of triplons up to 8 K in Sr3Cr2O8

    Full text link
    Single crystals of the spin dimer system Sr3Cr2O8 have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of Hc1 ~ 30.4 T and Hc2 ~ 62 T. This field-induced order persists up to ~ 8 K at H ~ 44 T, the highest observed in any quantum magnet where Hc2 is experimentally-accessible. We fit the temperature-field phase diagram boundary close to Hc1 using the expression Tc = A(H-Hc1)^v. The exponent v = 0.65(2), obtained at temperatures much smaller than 8 K, is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that Sr3Cr2O8 is a new realization of a triplon BEC where the universal regimes corresponding to both Hc1 and Hc2 are accessible at He-4 temperatures.Comment: 4 pages, 3 figures, accepted by PR

    Tensor field interpolation with PDEs

    Get PDF
    We present a unified framework for interpolation and regularisation of scalar- and tensor-valued images. This framework is based on elliptic partial differential equations (PDEs) and allows rotationally invariant models. Since it does not require a regular grid, it can also be used for tensor-valued scattered data interpolation and for tensor field inpainting. By choosing suitable differential operators, interpolation methods using radial basis functions are covered. Our experiments show that a novel interpolation technique based on anisotropic diffusion with a diffusion tensor should be favoured: It outperforms interpolants with radial basis functions, it allows discontinuity-preserving interpolation with no additional oscillations, and it respects positive semidefiniteness of the input tensor data

    Adaptive structure tensors and their applications

    Get PDF
    The structure tensor, also known as second moment matrix or Förstner interest operator, is a very popular tool in image processing. Its purpose is the estimation of orientation and the local analysis of structure in general. It is based on the integration of data from a local neighborhood. Normally, this neighborhood is defined by a Gaussian window function and the structure tensor is computed by the weighted sum within this window. Some recently proposed methods, however, adapt the computation of the structure tensor to the image data. There are several ways how to do that. This article wants to give an overview of the different approaches, whereas the focus lies on the methods based on robust statistics and nonlinear diffusion. Furthermore, the dataadaptive structure tensors are evaluated in some applications. Here the main focus lies on optic flow estimation, but also texture analysis and corner detection are considered

    Pressure Evolution of the Magnetic Field induced Ferromagnetic Fluctuation through the Pseudo-Metamagnetism of CeRu2Si2

    Full text link
    Resistivity measurements performed under pressure in the paramagnetic ground state of CeRu2Si2 are reported. They demonstrate that the relative change of effective mass through the pseudo metamagnetic transition is invariant under pressure. The results are compared with the first order metamagnetic transition due to the antiferromagnetism of Ce0.9La0.1Ru2Si2 which corresponds to the "negative" pressure of CeRu2Si2 by volume expansion. Finally, we describe the link between the spin-depairing of quasiparticles on CeRu2Si2 and that of Cooper pairs on the unconventional heavy fermion superconductor CeCoIn5.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp
    corecore