605 research outputs found

    A long trail behind the planetary nebula HFG1 (PK 136+05) and its precataclysmic binary central star V664 Cas

    Full text link
    A deep wide-field image in the light of the Halpha+[N II] emission lines, of the planetary nebula HFG1 which surrounds the precataclysmic binary system V664 Cas, has revealed a tail of emission at least 20' long, at a position angle of 316deg. Evidence is presented which suggests that this is an ~10^5 y old trail of shocked material, left behind V664 Cas as it ejects matter whilst ploughing through its local interstellar media at anywhere between 29 and 59 km/s depending on its distance from the Sun.Comment: 3 pages, 1 figure, accepted for publication in MNRA

    It's a wonderful tail: the mass loss history of Mira

    Full text link
    Recent observations of the Mira AB binary system have revealed a surrounding arc-like structure and a stream of material stretching 2 degrees away in opposition to the arc. The alignment of the proper motion vector and the arc-like structure shows the structures to be a bow shock and accompanying tail. We have successfully hydrodynamically modelled the bow shock and tail as the interaction between the asymptotic giant branch (AGB) wind launched from Mira A and the surrounding interstellar medium. Our simulations show that the wake behind the bow shock is turbulent: this forms periodic density variations in the tail similar to those observed. We investigate the possiblity of mass-loss variations, but find that these have limited effect on the tail structure. The tail is estimated to be approximately 450,000 years old, and is moving with a velocity close to that of Mira itself. We suggest that the duration of the high mass-loss phase on the AGB may have been underestimated. Finally, both the tail curvature and the rebrightening at large distance can be qualitatively understood if Mira recently entered the Local Bubble. This is estimated to have occured 17 pc downstream from its current location.Comment: 12 pages, 3 colour figures, accepted by ApJ Part II (Letters

    Vortices in the wakes of AGB stars

    Get PDF
    Vortices have been postulated at a range of size scales in the universe including at the stellar size-scale. Whilst hydrodynamically simulating the wind from an asymptotic giant branch (AGB) star moving through and sweeping up its surrounding interstellar medium (ISM), we have found vortices on the size scale of 10^-1 pc to 10^1 pc in the wake of the star. These vortices appear to be the result of instabilities at the head of the bow shock formed upstream of the AGB star. The instabilities peel off downstream and form vortices in the tail of AGB material behind the bow shock, mixing with the surrounding ISM. We suggest such structures are visible in the planetary nebula Sh 2-188.Comment: ApJL accepted, preprint form, 13 pages including 4 pages of figure

    A JAFROC study of nodule detection performance in CT images of a thorax acquired during PET/CT

    Get PDF
    Purpose Two types of CT images (modalities) are acquired in PET/CT: for attenuation correction (AC) and diagnosis. The purpose of the study was to compare nodule detection and localization performance between these two modalities. Methods CT images, using both modalities, of an anthropomorphic chest phantom containing zero or more simulated spherical nodules of 5, 8, 10 and 12 mm diameters and contrasts −800, −630 and 100 HU were acquired. An observer performance study using nine observers interpreting 45 normal (zero nodules) images and 47 abnormal images (1–3 nodules; average 1.26) was conducted using the free-response receiver operating characteristic (FROC) paradigm. Data were analysed using an R software package implemented jackknife alternative FROC (JAFROC) analysis. Both empirical areas under the equally weighted AFROC curve (wAFROC) and under the highest rating inferred ROC (HR-ROC) curve were used as figures of merit (FOM). To control the probability of Type I error test alpha was set at 0.05. Results Nodule detection as measured by either FOM was significantly better on the diagnostic quality images (2nd modality), irrespective of the method of analysis, [reader averaged inter-modality wAFROC FOM difference = −0.07 (−0.11,−0.04); reader averaged inter-modality HR-ROC FOM difference = −0.05 (−0.09, −0.01)]. Conclusion Nodule detection was statistically worse on images acquired for AC; suggesting that images acquired for AC should not be used to evaluate pulmonary pathology. Keywords PET/CT; Nodule detection; JAFRO

    An HI shell-like structure associated with nova V458 Vulpeculae?

    Get PDF
    We report the radio detection of a shell-like HI structure in proximity to, and probably associated with, the nova V458 Vul. High spectral resolution observation with the Giant Metrewave Radio Telescope has made it possible to study the detailed kinematics of this broken and expanding shell. Unlike the diffuse Galactic HI emission, this is a single velocity component emission with significant clumping at ~ 0.5' scales. The observed narrow line width of ~ 5 km/s suggests that the shell consists of mostly cold gas. Assuming a distance of 13 kpc to the system, as quoted in the literature, the estimated HI mass of the nebula is about 25 M_sun. However, there are some indications that the system is closer than 13 kpc. If there is a physical association of the HI structure and the nova system, the asymmetric morphology and the off-centred stellar system indicates past strong interaction of the mass loss in the asymptotic giant branch phase with the surrounding interstellar medium. So far, this is the second example, after GK Per, of a large HI structure associated with a classical nova.Comment: 6 pages, 2 table, 3 figures. Accepted for publication in MNRAS Letters. The definitive version will be available at http://www.blackwell-synergy.com

    A discrete slug population model determined by egg production

    Get PDF
    Slugs are significant pests in agriculture (as well as a nuisance to gardeners), and it is therefore important to understand their population dynamics for the construction of efficient and effective control measures. Differential equation models of slug populations require the inclusion of large (variable) temporal delays, and strong seasonal forcing results in a non-autonomous system. This renders such models open to only a limited amount of rigorous analysis. In this paper, we derive a novel batch model based purely upon the quantity of eggs produced at different times of the year. This model is open to considerable reduction; from the resulting two variable discrete-time system it is possible to reconstruct the dynamics of the full population across the year and give conditions for extinction or global stability and persistence. Furthermore, the steady state temporal population distribution displays qualitatively different behavior with only small changes in the survival probability of slugs. The model demonstrates how small variations in the favorability of different years may result in widely different slug population fluctuations between consecutive years, and is in good agreement with field data

    3D Simulations of Betelgeuse's Bow Shock

    Full text link
    Betelgeuse, the bright, cool red supergiant in Orion, is moving supersonically relative to the local interstellar medium. The star emits a powerful stellar wind which collides with this medium, forming a cometary structure, a bow shock, pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. The models include realistic low temperature cooling and cover a range of plausible interstellar medium densities and stellar velocities between 0.3 - 1.9 cm-3 and 28 - 73 km/s. We show that the flow dynamics and morphology of the bow shock differ substantially due to the preferential growth of Rayleigh-Taylor or Kelvin-Helmholtz instabilities in the models. The former dominate the models with slow stellar velocities resulting in a clumpy bow shock sub-structure, whereas the latter produce a smoother, more layered sub-structure in the fast models. If the mass in the bow shock shell is low, as seems to be implied by the AKARI luminosities (~0.003 Msun), then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular nature of the bow shock shell is consistent with this conclusion. Thus, our results suggest that Betelgeuse entered the red supergiant phase only recently.Comment: Minor revisions, replaced Fig. 1, 15, and 16, added movies. For a pdf version with higher resolution, see A&A: Forthcomin
    • …
    corecore