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A DISCRETE SLUG POPULATION MODEL
DETERMINED BY EGG PRODUCTION

David Schley & Martin A. Bees
Department of Mathematics and Statistics, University of Surrey,
Guildford, Surrey. GU2 7XH UK

ABSTRACT

Slugs are significant pests in agriculture (as well as a nuisance to gardeners), and it
is therefore important to understand their population dynamics for the construction of
efficient and effective control measures. Differential equation models of slug populations
require the inclusion of large (variable) temporal delays, and strong seasonal forcing
results in a non-autonomous system. This renders such models open to only a limited
amount of rigorous analysis. In this paper, we derive a novel batch model based purely
upon the quantity of eggs produced at different times of the year. This model is open to
considerable reduction; from the resulting t w variable discrete-time system it is possible
to reconstruct the dynamics of the full population across the year and give conditions for
extinction or global stability and persistence. Furthermore, the steady state temporal
population distribution displays qualitatively different behaviour with only small changes
in the survival probability of slugs. The model demonstrates how small variations in the
favourability of different years may result in widely different slug population fluctuations
between consecutive years, and is in good agreement with field data.

Keywords: slugs, extinction, global stability seasonal variation.

1. Introduction

Terrestrial slugs (Gastropoda) are common in all temperate climates, and individ-
ual as well as different species have adapted to a variety of environments. Several
species are agricultural and horticultural pests, and an estimated £4-11million is
spent each year on chemical treatments by farmers in the United Kingdom alone.
Alternatives, such as using naturally occurring parasitic nematodes as organic bio-
control agents, are also available and have been shown to be effective [18,3]. These
have the advantage of not affecting the environment and other organisms, as well as
providing protection for longer periods when appropriately applied [19]. At present,
however, these methods are too expensive to be commercially viable for conventional
farming.

This paper is a first step towards a mathematical understanding of the dynamics
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of slugs, and ultimately their interaction with other (especially control) species,
with the aim of producing cost effective strategies for the deployment of biological
controls. Regardless of which method is used to control slugs in agriculture, a clearer
understanding of when significant variations in population numbers are likely to
occur would be of value. Large fluctuations in slug populations are observed in
field data [6], compared to relatively small (or unobserved) changes in surrounding
factors that are generally considered to be of importance. It is necessary to try
to understand both the underlying dynamics of this behaviour and to be able to
predict, with some measure of certainty, future populations.

A major pest slug is Deroceras reticulatum [16], and it is this species we shall
have in mind when biological assumptions are made. In addition to most of west-
ern Europe, D. reticulatum is considered indigenous to the western Palaeartic re-
gion [16], and has been introduced to most parts of the world [10], such as Aus-
tralia [1] and even sub-antarctic islands [4]. After its (accidental) introduction it
has frequently become a serious pest; indeed, almost all pest slugs in the USA are
introduced species [9]. D. reticulatum is considered a serious pest and of economic
importance [16], perhaps exacerbated by its choice of food. It is a well established
species, being recorded as such in Massachusetts by 1843, and reaching Colorado
(1890), California and Oregon (1891) shortly thereafter. The majority of slug dam-
age in UK agriculture is caused by D. reticulatum, estimated at approximately 70%
[2]. For a comprehensive description of the life-cycle of this species under various
conditions see [13,14,15,16,17] and references therein.

Previous models [11,12] have modelled the dynamics of adult slug biomass (a
significant factor when determining crop damage), although time delays and essen-
tial seasonal fluctuations in this system inhibit analytical approaches. In this paper,
we develop a model based purely upon the quantity of eggs produced at different

” By considering the survival of emergent slugs

times of the “reproductive season.
it is therefore possible to evaluate the total number of slugs of different ages (and
hence mass) present at any given time of the year, and thus reconstruct the full pop-
ulation dynamics. It is also possible to collapse the system down to two dimensions
and obtain analytical results; here we are interested in the key mechanisms of the
population dynamics and not quantitative predictors. Realistic seasonal variations
may be included through the model parameters, and although analytical results are

far more complex their derivation remains feasible.

In the following section we shall construct the model and explain the notation.
Section 3 introduces the “collapsed” model and Section 4 gives our main analytical
results concerning conditions for extinction or persistence. In Section 5 we relate
these results to the population distribution across the year, and consider varia-
tions in favourability between years in Section 6. Section 7 is concerned with the
application of controls, especially the best time of year for these to be used. Alter-
native model formulations are discussed in Section 8, and the implications of results
discussed in Section 9.



2. Egg batch model

Consider the slug eggs laid during the main breeding season. The season may
be divided into six-weekly intervals, since this is approximately how long eggs take
to hatch and leads to a simpler modelling approach. Slugs are therefore divided
into separate “batches,” corresponding to eggs laid in the same time interval. After
the eggs (E) have been laid, they spend three time intervals as juveniles (J) before
becoming mature individuals (M) capable of laying eggs.

Slugs such as D. reticulatum are hermaphrodite whose male reproductive system
is developed before the female part. They are incapable of self fertilisation, and
during reproduction young individuals often act as “males”, while larger individuals
act as egg producing “females”. The sexual role of these young juveniles (J) is not,
however, considered as either necessary or significant, since mature adults (M and
A) may also take on the role of “males” in the absence of smaller slugs. The
fertilisation of other individuals is relatively inexpensive, in terms of both time and
energy, in comparison to the production of eggs.

Juveniles are considered too small to survive winter if they have not reached
the mature stage by the end of the season. Mature slugs, on the other hand, are
considered as capable of overwintering and return the next year as older adults (A).
They continue to lay eggs during the following year, but are then considered to old
(exhausted) to survive a second winter. Most eggs hatch the following time interval,
although those laid at the end of the season take longer to hatch [7], and these are
then classed as lying dormant until the following season (becoming members of
the first “batch”). Here we have allowed only the last egg batch to overwinter,
although similar results are obtained if we allow the last two batches to overwinter
(see Section 8).

It has been shown that adults may survive quite cold conditions [5], their num-
bers are sharply reduced when night frost is present without snow cover [15]. Eggs
are less susceptible to winter conditions, but again benefit from snow cover in very
cold temperatures [5]. Young slugs appear the most susceptible, and reductions in
overall population numbers have been attributed to their demise [8].

The full dynamics of the model are portrayed in Fig. 1. There are six main
egg batches covering the active period of the year for slugs and one adult batch
representing slugs that survive the winter. The developmental stage of each batch
is shown, where the suffix denotes the batch number (the time interval of the year
when it was laid). The number of eggs produced (p), survival probability during
each time interval (o) and for the winter (@) may vary with time or for different
batches. Survival at different times is clearly important since it determines our full
population from the egg population.

| Fig. 1 near here (see end). |

We denote the number of individuals in batch i (i.e. eggs laid in time interval
i) in year ¢t by B! (i =1,2,...,6), and the adults who have overwintered from the
previous season by Bf. As individuals progress through the season they have a



probability o; of surviving interval i, while the probability of surviving the winter is
e or ji; (1 = 1,2) for eggs in batch 6 or mature slugs in batches 1 and 2 respectively.
The number of eggs laid by each mature batches during each time interval is denoted
by pi. (or pi), where the subscript distinguishes the varying rates of egg production
both between different size/age slugs in different batches, and due to the time of
year (see Figure 1 for details).

Our model may thus be written as:

Bé = (ﬂldlBi71 + ﬂQBéil) 05040302,

Bl = p1BY + g By,

B = py 01 B,

Bé = pP3 0'2(7136, (21)
BZ = P4 0'30'2(71B(t),

Bé = ps5 0’40’30’20’136 + pr 0’40’30’20’13{,

Bé = p6 0’50’40’30’20’136 + ps 0'50'40'30’20’13{ + P9 05040302 Bé,

where tilde denotes a parameter which is not constant (see below). Clearly, if all
the parameters are constant, then we have a linear system with the trivial out-
come of either extinction or unbounded growth. Self limitation is considered to
occur through resource limitation at critical times of the year, although we have
attempted to include only minimal limitations, maintaining the maximum freedom
while keeping populations bounded.

Only batch 1 and 2 overwinter as adult slugs competing for food, and so we
consider the winter survival probability as being inversely proportional to the total
overwintering population:

- Bui

o . i=1,2, 2.2
Hi 0’50’40’30’20’13{ +0’50’40’30’23§ +,6 ( )

where 3 is some absolute maximum for the number of individuals who could survive.
The largest batch to hatch is By, resulting from both dormant eggs and those laid by
overwintering adults. Although we expect sufficient resources so that overcrowding
will not significantly effect survival, it may impinge on the growth - and hence
maturation rate - of individuals. The proportion of the batch likely to attain egg
laying ability will therefore decrease with the size of the batch, which may be
incorporated by scaling the expected number of eggs produced by Bj later in the
season as follows:
~ ap;

- i =17,8. 2.3
pl B{-I—a’ ? 9 ( )

Here « is again some absolute maximum for the number of individuals who are likely
to mature to egg laying size during the season. We assume that all individuals will
attain maturity by the end of the season (and hence survive the winter, returning
as egg laying adults at the start of the next season), since the initially smaller
individuals will have conserved extra energy not expended on egg production. Later
batches are relatively free from such competition (and any consequential delay in



maturation) due to the lower number of individuals, and because their initial growth
occurs later in the season when there is a relative abundance of resources.

Note that p, u, o (and, hence, a and ) are all positive. Furthermore, since they
are survival probabilities, pu,o < 1.

3. Reduced model

For notational simplicity we assume from this point on that
o; =0, uw=p and p; = p, (3.1)

for all i. What follows is technically possible without this assumption, but the
analysis is messy and merely obscures the results.
Define z; and y; by

p Buo’(oBi + B})

z; = pB and = . 3.2
¢ HBe vt o'(oB! + BL) + 8 32)
Then the system (2.1) may be written as
Bé—i—l = %yt:
B§+1 =Yt + T,
Bé—i—l = O0Yt,
B§+1 — Uth
Bt = o3y, (3.3)
t+1 _ 4 a(y: + )
Bym =0 yt+pyt+mt+a ’

t+1 _ ay—}—w
Bgt =0y + PMT% +,0yt>-

By substituting (3.3) into (3.2) we may derive the system of difference equations

a(r; +
zep1 = p(1+p) 0%y + ppo® oot (+tyt )

_ 5 B (x + 2y,) (3.4)
Yi+1 upo Pt (¢ + 2y1) + 3

Note that z and y in (3.2) are (positive) functions of By, By, Bg alone, so that initial
conditions for the system (3.4) only require these values to be given. Moreover, if
we can find z; and y;, we have totally determined the system (3.3) and hence the
population distribution.

4. Global stability and extinction

We define the parameters

a = po®(1+ p), b:% and c=po’p (4.1)



for convenience, and henceforth consider the system

Ti41 = % + ayy,
_be (x4 2yp) “2)
Yt+1 = m:
with strictly positive initial conditions
To, yo > 0. (4.3)

Theorem 1 Consider the system (4.2) with initial conditions (4.3).

(i) Solutions remain positive and bounded; explicitly,
0 < ¢ < po’plat+p(l+p)B) and 0 < y; < upp. (4.4)

for all t > 2.
(i) If
puosp (3 + ua‘r‘) >1 (4.5)

then limy o0 (2¢,y:) = (2*,y*), where (x*,y*) is the unique positive solution

of
c_a(@+y") o x_ be(@t+2y%)
xr 2074'(1 \ = 0. 46
1y ta Y T ) b (4.6)

(i4i) If inequality (4.5) does mot hold then lim;_ oo (z¢,y:) = (0,0).

The proof of Theorem 1 is sketched below; less mathematically inclined readers may
wish to go straight to Section 5 .

Proof. (i) It is trivial to show that if (z¢,y;) > 0 then (z¢11,9:41) > 0, from
which it follows by induction that (z;,y;) > 0 for all ¢ given (4.3).

It follows from (4.2) that

be (x4 + 2y:)
= ————= < b Vi, y: € (0,00), 4.7
Yt+1 (e + 202) + b c zt,yr € (0,00), (4.7)

so that y; < be for all ¢ > 1. Similarly
i1 < ayr+ca Vrg,y € (0,00),

giving z; < abc + ca for all ¢ > 2.
Consider the solution y,(z:) of ys+1 = yi, which satisfies the equation

202(24) + (2 +b(1 = 2¢)) yu(2) — bexy = 0. (4.8)

Since be > 0 there exists a unique positive real root y.(z;) for each ;.



Lemma 1 y.(z:) is concave for x; > 0. Explicitly, it is strictly monotonically
increasing (with decreasing gradient) from 0 if 2¢ < 1 and from b(2c¢—1)/2 otherwise,
and is bounded above by be for t > 1.

Proof. We first note that y*(0) = 0 or b(2¢c — 1)/2 only. Differentiating (4.8)
implicitly and solving we obtain

dys(z) _ be — yu(z) _ be — yu(zt) _
\/(:Ut —blc—1))* + 8bewy

It follows from condition (4.7) that dyd*—xt) > 0 Vt > 1. By differentiating again it
is simple to show that the second derivative of y.(z;) (with respect to x;) remains
strictly negative for all z; > 0. O.

By a similar argument we may establish that there exists a unique positive real
root z.(y;) of x;41 = x; and that
Lemma 2 z,(y;) is concave for y; > 0. FExplicitly, it is strictly monotonically
increasing (with decreasing gradient) from 0 if ¢ < 1 and from (¢ — 1)« otherwise,
and is bounded above by abc + ca for t > 2.
Proof. This is immediate from calculating the derivative ZZ:(M, applying (4.2)
and noting that y < be for t > 1. O.

We may now prove the following
Lemma 3 A unique positive solution of (4.6) exists if and only if condition (4.5)
holds.
Proof. By the intermediate value theorem it is clear that y.(x) and z,(y) will
intersect (in the positive quadrant of the (z,y) plane) once unless the curve y.(z)
remains below z,(y) for all z,y > 0. Necessary and sufficient conditions for this
(since z4(y) and y.(z) are concave) are that z.(y) and y.(z) both pass through the

dxy 4y, (z¢) + (zt + b(1 — ¢))

origin, and dy;—(z) < % . After some algebra these become (the first
* 1.0 - 1(0.0)
by Lemmas 1 and 2):
20<1and1_c ¢ (4.9)
a+c 1—2¢ '
Condition (4.5) may be rewritten as
(1-¢)(1—2c¢) < cla+c). (4.10)

To satisfy the first of (4.9) we require ¢ < %, under which (4.10) rearranges to give
the converse of the second of (4.9). Condition (4.5) therefore implies the existence
of a point of intersection.If (4.5) does not hold then a > ¢ implies ¢ < % < % and
it quickly follows that the second of (4.9) will also hold. When po®p (3 + po®) =1
we have intersection at the origin, so that we require (4.5) to be a strict inequality.
A single point of intersection of the curves implies a unique solution to (4.6). O.

For convergence, consider ¢ > 2 so that y; < be, 2y < abc + ac. Assume first
that there exist positive equilibria 2*(y;) and y*(z:). We note that

—2y:° + (2 + b(1 — 2¢)) ys + bea

_ — > 0iff ¥ < yu(my),
Yt+1 — Yt 21+ 20 + b Y < yu(zt)




since y.(z) is the solution of (4.8). Furthermore, if y; > y.(2;) then
be (z: + 2y:) be (x4 + 2y. ()

= > = y.(z
Yt = i +b @t o) +6 -
so that
Y > Yu(@) = Y > Yy > yul), (4.11)
Yr < Yul@e) =y < yep1 < Yul@y).
Similarly,

Ty > Tu(ye) = ;g > w1 > Tu(ye), (4.12)
T < Ty (yt) =T < T4 < x*(yt). ’
We may now prove the final set of lemmas to complete Theorem 1.

For each ¢ > 0, consider the four regions

{@eu) = e > ya(@e), 20> zu(ye)}

{(@e,ye) = ye > yulae), 20 <@ulye) }
IIT = {(z6,y:) © yr < yule), @0 < 2y },

{( ) oy < yulwe), x> 2a(ye) }
within the bounds given by (4.4). In what follows we need only consider bounded
initial conditions since (¢, y;) is in one of the four regions for all ¢ > 2 by (3).
Lemma 4 If (4.5) holds then there exists € > 0 such that for every T > 0 there
exists te > T such that z;, + y;. > €.
Proof. For a contradiction assume that given € > 0 there exists 7' > 0 such that
xt, +yr. < e for all t > T. We linearise (4.2) about the origin, giving

<$t+1> _ (c a—}—c) <:Ut)
Yet1 c 2c ye )
Linear stability is determined by roots of the the characteristic equation
CA) = X =3ch+c(c—a),
which satisfies C — +o00, A = co. Now,
Cl)=c*=(B+a)e+1=1—-puo"p(3+us®) <0

by (4.5), so that there exists a real root A\, > 1 of C'(\) and, hence, the origin is
an unstable equilibrium. Thus (z,y;) cannot tend to (0,0) for all solutions with
initial conditions of the form (4.3). O.
Lemma 5 If (4.5) holds then any solution with initial conditions (z¢,y:) such that
(e — 24 (y1)) (yt — yx(x)) > 0 converges monotonically to (z*,y*).
Proof. We show the proof for (z;,y;) € Z; the proof for region ZZ7 is similar.

It is clear by (4.11), (4.12) that any solution with initial conditions inside either

region Z or ZZ7 will remain in that respective region for all time, since

x> 24 (Yt) o Tt > xpp1 > To(Ye)

Yt > Y (2t) Yt > Yeg1 > Yu ()
Yu(Tt) 2 Yu(@e1) _ Tep1 > TulYit1)
Tu(Ye) > Tu(Yis1) Yir1 > Yu(Tr11)

(zt,y1) €T =

= (Tt41,Y141) €T



Since z.(y:) and y.(z:) are monotonic increasing with a unique positive inter-
section (z*,y*), it follows that

*

x> T (ye), Yu(zs) > y*,
= S V> . 413
v > (o), ma(y) > av, 20 (4.13)

To show this, consider the set
{(z,y) : 2.(y) <z <abe+ac,y.(z) <y <bc;z+y>e},

with z, and y, as in Lemmas 1 and 2. Without loss of generality we can choose
e > 0 small enough so that (z*,y*) is in this set. Define x,,;, as the minimum value
of x within the set, which we know exists since z, and ¥, are bounded below. Since
¥« 18 monotonic increasing in z, the minimum value of y within the set is

Similarly
Tmin = Tx (ymzn) (415)

Since (z*,y*) is the unique positive intersection point of z, and y., solving (4.14)
and (4.15) simultaneously implies

* *
Imin =T 5 Ymin =Y

and the proof of (4.13) is complete.
Therefore, by (4.11), (4.12) and the above we have

Ty > Tpy1 > :r*(yt) > z* and Yt > Yi41 > y*(:rt) > y*,

for all t > t3. The sequences {z;}3°, {y:}3° are, therefore, monotonic decreasing and
bounded below, and thus converge to some limit. By Lemma 3 and 4 the unique
solution to which (x,y;) converges is (z*,y*), given by (4.6). O.

Lemma 6 If (/.5) holds then all solutions (xt,y:) converge to (z*,y*).

Proof. First assume that there exists a solution which does not leave Z7 for all
t >t for some ¢, > 0. By (4.12) and part (i) we have that {z;}{5 is a monotonic
increasing sequence bounded above by abc + ac, and by (4.11) and part (i) that
{y¢}§7 is a monotonic decreasing sequence bounded below by 0. Therefore, both
sequences converge, by uniqueness, to (z*,y*). Similarly, it may be shown that any
solution which remains in region 7V will also converge to the equilibrium. Note that
we do not claim that such solutions exist, only that any solutions which remain in
I7T (or V) converge.

Since all solutions which enter Z or ZZZ remain there (and converge, by Lemma 5),
it only remains to consider solutions which alternate between ZZ and ZV for all time.
Consider the time ty at which such a solution first enters ZZ. We need to consider
three cases, although the method of proof in each case is similar.



Case 1: Assume that
Ty, < T¥, Yy <Y". (4.16)

Given the monotonicity properties of x, and y, defined in Lemmas 1 and 2, it
immediately follows that

(z,y) eZIN{(z,y) : z<z*,y <y} = z < z.(y«()) < z*. (4.17)

It is simple to show this graphically, and follows from the fact that the curve y.(z)
is above the curve z* (w.r.t. z) in this region. Since (z,,¥y:,) € ZZ, we have

Tty < Tpo41 < w*(yto): Yto > Yto+1 > y*(wto)

Define #° as the next time the solution enters ZV, so that

(z¢,y:) € Bo = [mtmx*(yto)] X [y*($t0)=yto]

for all o <t < 0.
Let t; be the first return to ZZ. Since (z;,y;) € ZV for t° <t < t; by definition,

Ty < Ty0 <‘r*(yt0):
and
Ty > T (Ys (1)) > T4

using (4.17). Similarly, we may show that y.(z,) < y: < ys, for t° <t < t;, which
combine to give
(z¢,y:) € Bo, forall to <t <ty.

It can be shown by induction that if ¢; are the times the solution re-enters 77,
then

(Cﬂt,yt) € By, forallt; <t< tiv1,
where B; is the box defined by:
Bi = I:‘rtﬂ‘r*(yti)] X [y*(:rti)ayti]- (4'18)

We will prove convergence of the solution to the equilibrium by showing the
convergence of the series of boxes {B;} to the point (z*,y*). Since the diagonal to
(z4;,yt;) of B; is the point (z.(y:,),y«(x+,)), we can generate a new box such that

(‘rti+17yti+1) € [‘r*(y*(xti))7$*(yti)] X [y*(xtz‘))y*($*(yti))]' (4'19)

We first show that if (zy,,y;,) satisfies (4.17), then (zy,,,,ys,,,) does too. Since
(‘rti+1 ) yt,-Jrl) IS by deﬁnition,

‘Tti+1 < (IJ* (yt,-+1)- (420)

10



The monotonicity of z,, together with y;,,, < y«(z.(ys;)) by (4.19) implies that

w*(yti+1) < w*(y*(x*(yti)))‘ (421)

Since
g < y° = wa(a(a(yn))) < zaly(z.(y)) = 27, (4.22)
we see that (4.17) implies, using (4.20), (4.21) and (4.22)), that

Ty, <* (4.23)

also. We can similarly show that y;,,, <y*.
Since (xt,,yt,) satisfy (4.16), and hence (4.17), we have shown by induction that
(z¢,,y:,) satisfy (4.17) for all ¢. This states that

Ty, < Ty (y* (xti ))

which, together with
T« (y*(wti)) < wti+1

by (4.19), implies that the sequence {zy,}$2, is monotonic increasing.

The sequence is bounded above since all points satisfy (4.17) and, therefore,
converges to some limit x;. It follows that {y.(z:,)} is also monotonic increasing
and bounded above (by y*) and converges to some limit y;. The limits must satisfy

T (y« (1)) = 21,

which has the solutions z; = z* or z; = 0. The latter is clearly not valid since zy > 0.
Similarly, we may show that y;, converges to y* (and hence (z.(y;;) — z«). The
lower and upper bounds of our boxes B; thus converge monotonically to the point
(z*.y"). Since for every i there exists a t; such that for all t > ¢;, (¢, y:) € U>; By,
convergence for the series (z;,y;) is proven.

Case 2: Assume that the solution (z,y:) satisfies z;, > z*, ys, > y*, where tg
is the time it first enters region ZZ. The proof is identical, but with monotonically
decreasing bounds on B;.

Case 3: Assume that z;, < z*, yi, > y*. We again consider the return times
ty,to,... for which the solution re-enters region ZZ. More specifically, we may
consider only those solutions whose return paths satisfy

Tt; < CU*, Y, >y*: ZZ Oa

since otherwise the solution enters one of the regions considered in Case 1 and 2
above and convergence is already proven.
Therefore we consider solutions which satisfy

(wti:yti) €IIN {(mtiiyti) P xy < ZE*, Yt; > y*}v i > 07 (424)

11



and show that convergence occurs through strictly nested boxes B;. In an analogous
fashion to (4.17), we can derive the property

2 < 2 (yu(2)) < 2%,

z,y) €EITN{(z,y) :xz<z*,y>y*} = .
(z,y) {(z,y) Yy >y'} y > y(za(y)) > y*.

(4.25)

It follows from observing that

(‘rti+17yti+1) € [x*(y*(xti))a l’*(yti)] X [y*(xti7 y*(‘r*(yti)))]:

that {z, }52, is monotonic increasing, since

Tt;4q > CU*(y* (mti)) > T,

by (4.25). Similarly we may show that {y;,}5°, is monotonic decreasing.

The sequences {z¢, }32, and {yy, }52, are bounded above and below respectively
by (4.24), so that each converge to some limit. By uniqueness, the limits are z* and
y*. The interim time steps may be included using boxes B; by a similar argument
to that used above, completing the proof that (z:,y;) — (z*,y*), t — oo for Case
3.

Note that we do not need to deal with region 7V separately, since any alternating
solution is considered from the time it first enters ZZ. 0.

Lemma 7 Assume that condition (4.5) does not hold. Then all solutions (xt,y;)
converge to (0,0).

Proof. The proof of this is similar to that above and is not shown here. In this
case we have a unique steady state at (0,0). The case of equality in (4.5) results in
convergence to an equilibrium which is the origin and therefore also gives extinction.
0.

The proof of our theorem is complete. O.

It may be noted that although environmental limitations (parameterised by «
and f3) affect the size of the population, they do not determine persistence, unless
one considers stochastic effects at low population levels. Criterion for extinction are
of the intuitive form p < p. (see Section 7 for details).

5. Temporal population distribution

Given initial conditions (BY, BY, BY) we may determine the dynamics of the
system through (4.2), and the long term behaviour by Theorem 1. The number of
eggs laid in each interval of the year is then given by (3.3), from which it is possible
to determine the slug population throughout the year. Explicitly, if S! is the total
number of slugs (J, M and A but not E) at interval 7 in year ¢, then

i—1
St = o'By + > o"IB! i=1,...,6. (5.1)

=1
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(where we have considered the simplification (3.1) for notational convenience). Fur-
thermore, we may calculate the post-season population (mature slugs about to
overwinter) by:

St = o' (¢B} + Bi),
so that the adult slug population that survives the winter is given by

187

Si+8

Note that S! (i = 1,...,7) are also functions of  and y only. We define S(t,i) = S!
as the annual population distribution.

It is interesting to note that while the solution (z*,y*) may simply be a globally
attractive positive equilibrium, the temporal population distributions generated by
it may exhibit a variety of behaviours depending upon the favourability of the
year. Clearly S(¢,4) converges to a globally stable periodic solution, but the annual
distribution may exhibit one or two maxima and either grow or decay over the
year. Examples of different temporal population distributions are given in Fig. 2.
These are the steady state solutions (i, S}) which result from the convergence of
(zt,yt) to (z*,y*). The variation in temporal population distribution can be brought
about by a small change in the survival probability o. In other words, we may
witness markedly different behaviour in the temporal population distribution simply
because of small annual variations in the prevailing environmental factors. We are
primarily interested in the steady state temporal distribution of the population, not
transient effects. The results shown are therefore of the equilibrium distribution, to
which all solutions rapidly converge .

These results compare favourably with available field data [6,15], where the
population exhibits both monotonic and multi-peak distributions in a given year,

(5.2)

t+1 t+1
Sl - BO -

including very sharp increases and decreases in the population. Increasing the
number of peaks in our model to a number greater than two requires o to vary
within the season (o; # o for some ). This is discussed in section 6.

| Fig. 2 near here (see end). ]

6. Parameter variation

6.1. Seasonal

Although analysis is only shown for the case (3.1) for simplicity, qualitatively
similar results are obtainable for general parameters which do not remain constant
throughout the year. Thus for example, we might expect the survival probabilities
of individuals in spring (o1) to be greater than at the height of summer (oy4).

We again find that the system either attains a stable steady temporal population
distribution or results in extinction. In addition, however, the possible stable annual
distributions (as shown in Fig. 2 for the above model) are extended, with a greater
number of maxima possible during the year, as sometimes observed in the data [6].

13



6.2. Between seasons

In temperate climates there are significant variations in climatic conditions be-
tween different years, and these will influence the population dynamics (such as
survival and how many eggs survive per laying adult). We therefore consider vari-
ations in the model parameters, based upon the effects of the average annual rain
fall and temperature in consecutive years. Fig. 3 shows the resultant population
for a ten year period, with relatively small variations in the model parameters be-
tween years (but not within seasons), based on basic biological assumptions. For
example, egg production is reduced when the temperature is too high or too low
(for more details on these aspects of the biology of D. reticulatum see [13,14,15,16];
for appropriate modelling approaches see [11]). We do not, of course, have a con-
vergent solution (except the possibility of extinction), since in each individual year
solutions will be converging to a (generally) different steady temporal population
distribution.

| Fig. 3 near here (see end). |

7. Effect of treatment

Necessary and sufficient conditions for extinction of the population are given

in Theorem 1, although it should be noted that the positive equilibrium (z*,y*)
approaches the origin arbitrarily closely as equality is approached. If we define

§ = po’® (7.1)

as the limiting annual survival probability (for large populations), then extinction

will occur, by (4.5), if and only if p < p., where
1
= —, 7.2
Pe = 50 +3) (7.2)

which we may alternatively express as § < §, where

6C=—W>O.

This means that the population would become extinct if the annual survival proba-
bility dropped (and stayed for sufficient time) below some critical value. This value
is determined by, and monotonically decreasing with respect to, the egg production
p.

The extinction rate is given by € = |1— .|, where A, is the principle eigenvalue at
the origin. Explicitly, the characteristic equation given by linearising the continuous
version of (4.2) about (0,0) is

M —3ch—cla—c) = 0,

with largest eigenvalue

A= L (Varam+3) - 5.
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giving
ezl—i, (0 < dc).
6C

In this section we consider the effect of applying some protective treatment
(biological or chemical) to crops, designed to reduce the survival rate of slugs.
Untreated populations would generally be expected to have a survival rate § > .,
that is, under normal conditions they do not go extinct. We consider reducing the
survival rate in any given time interval i where treatment takes place by a factor
T;, that is,

o; — T;04,
Hi = Tefbis
where 7; = 1 is obviously equivalent to no treatment in interval 4.

If we assume that treatment affects slugs and eggs equally, then it immediately
follows that the annual survival rate following treatments will be given by 6, =
0mTam3TatsTe (< 6). If §, < 0. then the treatment is sufficient to eliminate the
population.

Most treatments, however, are aimed at slugs, and do not directly affect eggs.
We therefore need to consider the case where the survival rate in a time interval in
which treatment is applied is reduced to the form (7.3) for hatched slugs only, and
remains unchanged for newly laid batches. We will refer to treatments implemented
at the end of each time interval i as reducing the proportion of slugs in each batch
that survive to the next interval by a factor 7;. The survival of eggs laid in that
interval are not affected, nor the rate at which they are laid.

To do this we need to consider a more general form of the model (3.4), namely
the system of difference equations

0<r <1, (i=1,...,6) (7.3)

av (T +
Tiy1 = % + Uy,

u,v,w,y > 0. (7.4)
Yig1 = wb (74 + YY) ’
(zt +yye) + B
Parameter values for the untreated system (3.4) and the case when treatments
are applied at various times are given in table 1, but the following theorem holds
for all u,v,w,v,B > 0.
Theorem 2 The solution (0,0) of system (7.4) is globally attractive if and only
if
v+yw <2 and (v+yw) + wu+ov(l—7)) <1 (7.5)
The proof is similar to that of section 4 and the analysis is not given here.
Note that in the absence of treatment, criteria reduce to the converse of (4.5).

| Table 1 near here (see end). |

Theorem 3 The application of treatment will result in extinction if and only if
1

5 .
O0T3TsTs (TlTﬁ + T + ToT + 01Ty T3T4T5T6)

p <pr = (76)
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Proof. We first show that the first condition of Theorem 2 is always satisfied by our
parameters when the second is, and then simplify this stronger (second) condition
to the form (7.6).

Lemma 8 If u,v,w,vy, B are as in Table 1, then
w+yw) + wuw+v(l—9) <1 = v+yw < 2.

Proof. The case for no treatment is proven separately in Theorem 1, although it
is a corollary of the following when 7, =1 (i =1,...,6).

We may rewrite the above two conditions as w < wi,w < ws respectively (since
here v + u + v — yv > 0), where

1—w 2—w
wy = —— and wy = .
Y+u+v—"yv ¥
Now
1—wv 1—wv
w; = < < wa,
v+ 0TI ToT3T4Ts y

sothat w < w; = w < ws for all w. 0O.
Substituting in our explicit parameters from Table 1, we have that

1> v+yw + wu+v(l—7)) = pdrmts (7'17'6 + Ty + TaT6 + 5T1T22T3T4T5T6) )

which is equivalent to (7.6). 0O.

We note that the threshold p. given by (7.2) may be derived by considering
m=1,i=1,2,...,6 in p, given by (7.6).

Theorem 4 For a single application T applied in only one time interval i:

=1, 1=1, forj#i, j=1,...,6,
the corresponding extinction threshold p,, satisfy:

() pe < pry < Prg < Pro < Pry = Pry = pry, 0< T <1
(i4) pr; = pe when 7 =1.

Proof. By substituting each i = 1,...,6 into (7.6) in turn, we derive:

Pr = ma
Pre = A+ 7(2+07)
Pry = m=

oo = ST E A

and (i1) is a direct consequence of considering lim,_,; p,,. Part (i) follows from
T < 1 so that
1 1

k=3,4,5,

Do " Bro =0(34+71) -2+ 7+ 07) =6(1-61) >0 = p. < pr,
%—%:5(2+T+5T)_5(1+2T+57) =6(1—-7) >0 = ppy < pros
%—%:5(1+2T+5T)_5(1+2T+5T2):527(1—7) >0 = pry < pros
i—m=6(1+27+672)—67(3+57) =6(1-=71) >0 = pry, < pPrs-
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O.

Corollary 1 Complete elimination(i.e. T = 0) of slugs in a time interval i will
result in extinction:

(i) unconditionally for i =3,4,5;
(i) for p < 1/§ fori=2,6;
(#3) for p < 1/2§ fori=1.

Proof. This follows immediately by considering lim, ¢ p,, (i =1,...,6). O.

The above theorems give a clear order of priority for the time intervals that
should be selected for treatment, if the aim is for the long term elimination of slugs.

The total elimination of slugs is not sufficient to guarantee extinction, except
in that part of the season after all maturing slugs have hatched but before over-
wintering eggs have been laid. At all other times the delay in reproduction due to
egg development can result in the re-emergence of individuals. Since a reduction
in the population, rather than extinction, is often the more likely outcome in the
field, treatment regimes are often applied for short term crop protection, rather
than overall population control. Results here however show that, since all batches
B! (and hence the population in each interval S(t,4)) are monotonic increasing in z;
and y;, and z* and y* are monotonic decreasing in each ;, it is the latter strategy
which will give better protection.

Treatments should therefore attempt to control the overall slug population,
rather than simply dealing with the large numbers which appear at certain times
of the year. The situation is obviously more complicated when there are significant
variations in the parameters (both between years and within a season), or when an-
nually repeated treatments have not been applied, so that in this case other short
term strategies may be advantageous.

8. Alternative model formulations

The model considered in this paper is based on a strongly defined season for slug
activity, with a harsh winter which eliminates a large proportion of the individuals.
If we are considering the possibility of highly favourable seasons, it is natural to
extend the model to the case where more individuals survive. As an example we
have considered the case where many more eggs laid late in the season (and not
just at the end) may lie dormant until the next season. Instead of individuals laid
in time interval 5 hatching therefore, they remain eggs and survive the winter (with
rate ps) to become part of Batch 1, similar to the eggs laid in Batch 6. Results
are very similar, although for the special case (3.1) only a single peak per season
is possible. Solutions again either attain a stable steady population distribution or
extinction, and the analysis follows in the same way.

To extend the model further we could consider juveniles of all (or most) classes
surviving the winter, allowing for a continuous population. At this point, however,
the concept of a specific slug breeding season becomes invalid, and the analysis
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developed here is no longer relevant. Thus, although the seasonal model allows for
analytical progress not available to other models such as [11,12], the assumption
required for its simplified formulation is a necessary one.

9. Discussion

In this paper we have constructed and analysed a simple model for slug popu-
lations, based on the predominant species D. reticulatum. By simply considering
the number of eggs laid during each breeding season, a model has been developed
that may be reduced to a set of two difference equations. Conditions are derived for
extinction, or for the persistence of a stable steady temporal population distribu-
tion, including the effect of applying control strategies at different times of the year.
Egg production is used to determine the whole population (based on survival rates)
without further consideration of adult dynamics, with the additional advantage that
the age distribution of the slug population is also known.

The observed behaviour is qualitatively similar to available field data [6], espe-
cially if one allows for the effect of minor variations in the favourability of individual
years. It is significant that large variations in the size and dynamics of the popula-
tion in different years may be caused by small variations in the parameters, due to
slight changes in the temperature and rainfall (and thus ground humidity) between
consecutive years. Thus these relatively small variations in climate may result in
the large changes in the population dynamics observed in the field.

Results here are in agreement with those found in other types of model [11].
While the concept of a single season is at best only an approximation of the true
dynamics, we feel it has allowed for analytical progress while remaining relevant to
the original biological problem.
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Tables

Untreated | Treatment 7; in interval i.
u | d(p+1) 011 (T2 + p) 3TuTs
v op OPToT3TyTs
w op OPTaT3T4T5Tg
5 2 147 /T2
B B/o® B/ (0572737'47'5)

Table 1. The model parameters for system (7.4) for treatment applied at different times of the year,
with the untreated system is included for comparison. Note that applications in time intervals 3,4
and 5 all have identical effect, and that when 7; = 1 (¢ = 1,...,6), all parameters are equivalent
to no treatment being applied.

Figure Legends

Fig. 1. Eggs E; laid in time interval ¢ hatch into juveniles .J; which may eventually develop into
mature slugs M;, and overwinter to become older adults Ag (suffix 0 denotes that individuals were
laid and hatched in a previous year). An adult in Ag lays p; eggs in interval 7, while mature slugs
(M) lay at a different rate, reflecting their different size which may be affected by overcrowding
(see text). Throughout the season, individuals of all states survive the time interval i with rate o;.
Adults (A) and juveniles (J) do not survive the winter (being too old and too young respectively),
but mature slugs (M) or dormant eggs (E) from batches i survive with rate fi; or u; respectively.

Fig. 2. Examples of the steady state distribution (given by Theorem 1) of (5.1), (5.2) for different
values of the survival probabilities 0 < o, u < 1. Small changes in the favourability of the season
result in qualitatively different behaviour (here p, 0 = 0.7 £ 0.2).

Fig. 3. The total slug population S(i,t) varying with time, where the model parameters are allowed
to vary slightly with the climatic conditions. Here we have considered the effect of average annual
rainfall and temperature (in Britain) for the period 1991-1997 inclusive. Explicitly, we have o =
0.5+ 0.4f2(rain), u = 0.5+0.2f2(temp),a = 1 x 104, 3 = 3x 104, p = 0+ 5f2(rain)f2(temperature)
where the functions f2(h) are normalized linear functions of the form (h — hmin)/(hmaz — Pmin)-

For figures see end
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