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A DISCRETE SLUG POPULATION MODELDETERMINED BY EGG PRODUCTIONDavid Schley & Martin A. BeesDepartment of Mathematics and Statistics, University of Surrey,Guildford, Surrey. GU2 7XH UKABSTRACTSlugs are signi�cant pests in agriculture (as well as a nuisance to gardeners), and itis therefore important to understand their population dynamics for the construction ofe�cient and e�ective control measures. Di�erential equation models of slug populationsrequire the inclusion of large (variable) temporal delays, and strong seasonal forcingresults in a non-autonomous system. This renders such models open to only a limitedamount of rigorous analysis. In this paper, we derive a novel batch model based purelyupon the quantity of eggs produced at di�erent times of the year. This model is open toconsiderable reduction; from the resulting t wo variable discrete-time system it is possibleto reconstruct the dynamics of the full population across the year and give conditions forextinction or global stability and persistence. Furthermore, the steady state temporalpopulation distribution displays qualitatively di�erent behaviour with only small changesin the survival probability of slugs. The model demonstrates how small variations in thefavourability of di�erent years may result in widely di�erent slug population 
uctuationsbetween consecutive years, and is in good agreement with �eld data.Keywords: slugs, extinction, global stability ,seasonal variation.1. IntroductionTerrestrial slugs (Gastropoda) are common in all temperate climates, and individ-ual as well as di�erent species have adapted to a variety of environments. Severalspecies are agricultural and horticultural pests, and an estimated $4-11million isspent each year on chemical treatments by farmers in the United Kingdom alone.Alternatives, such as using naturally occurring parasitic nematodes as organic bio-control agents, are also available and have been shown to be e�ective [18;3]. Thesehave the advantage of not a�ecting the environment and other organisms, as well asproviding protection for longer periods when appropriately applied [19]. At present,however, these methods are too expensive to be commercially viable for conventionalfarming.This paper is a �rst step towards a mathematical understanding of the dynamicsAuthor for correspondence: Dr D. Schley, 8 Scotter Road, Bishopstoke, Hampshire. SO50 6AJUK Email: David.Schley@suht.swest.nhs.ukCondensed title: An egg based slug population model.1
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of slugs, and ultimately their interaction with other (especially control) species,with the aim of producing cost e�ective strategies for the deployment of biologicalcontrols. Regardless of which method is used to control slugs in agriculture, a clearerunderstanding of when signi�cant variations in population numbers are likely tooccur would be of value. Large 
uctuations in slug populations are observed in�eld data [6], compared to relatively small (or unobserved) changes in surroundingfactors that are generally considered to be of importance. It is necessary to tryto understand both the underlying dynamics of this behaviour and to be able topredict, with some measure of certainty, future populations.A major pest slug is Deroceras reticulatum [16], and it is this species we shallhave in mind when biological assumptions are made. In addition to most of west-ern Europe, D. reticulatum is considered indigenous to the western Palaeartic re-gion [16], and has been introduced to most parts of the world [10], such as Aus-tralia [1] and even sub-antarctic islands [4]. After its (accidental) introduction ithas frequently become a serious pest; indeed, almost all pest slugs in the USA areintroduced species [9]. D. reticulatum is considered a serious pest and of economicimportance [16], perhaps exacerbated by its choice of food. It is a well establishedspecies, being recorded as such in Massachusetts by 1843, and reaching Colorado(1890), California and Oregon (1891) shortly thereafter. The majority of slug dam-age in UK agriculture is caused by D. reticulatum, estimated at approximately 70%[2]. For a comprehensive description of the life-cycle of this species under variousconditions see [13;14;15;16;17] and references therein.Previous models [11;12] have modelled the dynamics of adult slug biomass (asigni�cant factor when determining crop damage), although time delays and essen-tial seasonal 
uctuations in this system inhibit analytical approaches. In this paper,we develop a model based purely upon the quantity of eggs produced at di�erenttimes of the \reproductive season." By considering the survival of emergent slugsit is therefore possible to evaluate the total number of slugs of di�erent ages (andhence mass) present at any given time of the year, and thus reconstruct the full pop-ulation dynamics. It is also possible to collapse the system down to two dimensionsand obtain analytical results; here we are interested in the key mechanisms of thepopulation dynamics and not quantitative predictors. Realistic seasonal variationsmay be included through the model parameters, and although analytical results arefar more complex their derivation remains feasible.In the following section we shall construct the model and explain the notation.Section 3 introduces the \collapsed" model and Section 4 gives our main analyticalresults concerning conditions for extinction or persistence. In Section 5 we relatethese results to the population distribution across the year, and consider varia-tions in favourability between years in Section 6. Section 7 is concerned with theapplication of controls, especially the best time of year for these to be used. Alter-native model formulations are discussed in Section 8, and the implications of resultsdiscussed in Section 9. 2



2. Egg batch modelConsider the slug eggs laid during the main breeding season. The season maybe divided into six-weekly intervals, since this is approximately how long eggs taketo hatch and leads to a simpler modelling approach. Slugs are therefore dividedinto separate \batches," corresponding to eggs laid in the same time interval. Afterthe eggs (E) have been laid, they spend three time intervals as juveniles (J) beforebecoming mature individuals (M) capable of laying eggs.Slugs such as D. reticulatum are hermaphrodite whose male reproductive systemis developed before the female part. They are incapable of self fertilisation, andduring reproduction young individuals often act as \males", while larger individualsact as egg producing \females". The sexual role of these young juveniles (J) is not,however, considered as either necessary or signi�cant, since mature adults (M andA) may also take on the role of \males" in the absence of smaller slugs. Thefertilisation of other individuals is relatively inexpensive, in terms of both time andenergy, in comparison to the production of eggs.Juveniles are considered too small to survive winter if they have not reachedthe mature stage by the end of the season. Mature slugs, on the other hand, areconsidered as capable of overwintering and return the next year as older adults (A).They continue to lay eggs during the following year, but are then considered to old(exhausted) to survive a second winter. Most eggs hatch the following time interval,although those laid at the end of the season take longer to hatch [7], and these arethen classed as lying dormant until the following season (becoming members ofthe �rst \batch"). Here we have allowed only the last egg batch to overwinter,although similar results are obtained if we allow the last two batches to overwinter(see Section 8).It has been shown that adults may survive quite cold conditions [5], their num-bers are sharply reduced when night frost is present without snow cover [15]. Eggsare less susceptible to winter conditions, but again bene�t from snow cover in verycold temperatures [5]. Young slugs appear the most susceptible, and reductions inoverall population numbers have been attributed to their demise [8].The full dynamics of the model are portrayed in Fig. 1. There are six mainegg batches covering the active period of the year for slugs and one adult batchrepresenting slugs that survive the winter. The developmental stage of each batchis shown, where the su�x denotes the batch number (the time interval of the yearwhen it was laid). The number of eggs produced (�), survival probability duringeach time interval (�) and for the winter (�) may vary with time or for di�erentbatches. Survival at di�erent times is clearly important since it determines our fullpopulation from the egg population.Fig. 1 near here (see end).We denote the number of individuals in batch i (i.e. eggs laid in time intervali) in year t by Bti (i = 1; 2; : : : ; 6), and the adults who have overwintered from theprevious season by Bt0. As individuals progress through the season they have a3



probability �i of surviving interval i, while the probability of surviving the winter is�6 or ~�i (i = 1; 2) for eggs in batch 6 or mature slugs in batches 1 and 2 respectively.The number of eggs laid by each mature batches during each time interval is denotedby �k (or ~�k), where the subscript distinguishes the varying rates of egg productionboth between di�erent size/age slugs in di�erent batches, and due to the time ofyear (see Figure 1 for details).Our model may thus be written as:Bt0 = �~�1�1Bt�11 + ~�2Bt�12 ��5�4�3�2;Bt1 = �1Bt0 + �6Bt�16 ;Bt2 = �2 �1Bt0;Bt3 = �3 �2�1Bt0;Bt4 = �4 �3�2�1Bt0;Bt5 = �5 �4�3�2�1Bt0 + ~�7 �4�3�2�1Bt1;Bt6 = �6 �5�4�3�2�1Bt0 + ~�8 �5�4�3�2�1Bt1 + �9 �5�4�3�2 Bt2; (2.1)where tilde denotes a parameter which is not constant (see below). Clearly, if allthe parameters are constant, then we have a linear system with the trivial out-come of either extinction or unbounded growth. Self limitation is considered tooccur through resource limitation at critical times of the year, although we haveattempted to include only minimal limitations, maintaining the maximum freedomwhile keeping populations bounded.Only batch 1 and 2 overwinter as adult slugs competing for food, and so weconsider the winter survival probability as being inversely proportional to the totaloverwintering population:~�i = ��i�5�4�3�2�1Bt1 + �5�4�3�2Bt2 + � ; i = 1; 2; (2.2)where � is some absolute maximum for the number of individuals who could survive.The largest batch to hatch is B1, resulting from both dormant eggs and those laid byoverwintering adults. Although we expect su�cient resources so that overcrowdingwill not signi�cantly e�ect survival, it may impinge on the growth - and hencematuration rate - of individuals. The proportion of the batch likely to attain egglaying ability will therefore decrease with the size of the batch, which may beincorporated by scaling the expected number of eggs produced by B1 later in theseason as follows: ~�i = ��iBt1 + �; i = 7; 8: (2.3)Here � is again some absolute maximum for the number of individuals who are likelyto mature to egg laying size during the season. We assume that all individuals willattain maturity by the end of the season (and hence survive the winter, returningas egg laying adults at the start of the next season), since the initially smallerindividuals will have conserved extra energy not expended on egg production. Laterbatches are relatively free from such competition (and any consequential delay in4



maturation) due to the lower number of individuals, and because their initial growthoccurs later in the season when there is a relative abundance of resources.Note that �; �; � (and, hence, � and �) are all positive. Furthermore, since theyare survival probabilities, �; � � 1.3. Reduced modelFor notational simplicity we assume from this point on that�i � �; �i � � and �i � �; (3.1)for all i. What follows is technically possible without this assumption, but theanalysis is messy and merely obscures the results.De�ne xt and yt byxt = �Bt6 and yt = � ���4(�Bt1 +Bt2)�4(�Bt1 +Bt2) + � : (3.2)Then the system (2.1) may be written asBt+10 = 1�yt;Bt+11 = yt + xt;Bt+12 = �yt;Bt+13 = �2yt;Bt+14 = �3yt;Bt+15 = �4�yt + � �(yt + xt)yt + xt + �� ;Bt+16 = �5�yt + � �(yt + xt)yt + xt + � + �yt� : (3.3)
By substituting (3.3) into (3.2) we may derive the system of di�erence equationsxt+1 = � (1 + �)�5yt + ���5 � (xt + yt)xt + yt + �yt+1 = ���5 � (xt + 2yt)�5 (xt + 2yt) + � : (3.4)Note that x and y in (3.2) are (positive) functions of B1; B2; B6 alone, so that initialconditions for the system (3.4) only require these values to be given. Moreover, ifwe can �nd xt and yt, we have totally determined the system (3.3) and hence thepopulation distribution.4. Global stability and extinctionWe de�ne the parametersa = ��5(1 + �); b = ��5 and c = ��5� (4.1)5



for convenience, and henceforth consider the systemxt+1 = �c (xt + yt)xt + yt + � + ayt;yt+1 = bc (xt + 2yt)(xt + 2yt) + b ; (4.2)with strictly positive initial conditionsx0 ; y0 > 0: (4.3)Theorem 1 Consider the system (4.2) with initial conditions (4.3).(i) Solutions remain positive and bounded; explicitly,0 < xt < ��5�(�+ �(1 + �)�) and 0 < yt < ���: (4.4)for all t � 2.(ii) If ��5� �3 + ��5� > 1 (4.5)then limt!1(xt; yt) = (x�; y�), where (x�; y�) is the unique positive solutionof x� = c � (x� + y�)x� + y� + � + ay�; y� = bc (x� + 2y�)(x� + 2y�) + b : (4.6)(iii) If inequality (4.5) does not hold then limt!1(xt; yt) = (0; 0).The proof of Theorem 1 is sketched below; less mathematically inclined readers maywish to go straight to Section 5 .Proof. (i) It is trivial to show that if (xt; yt) > 0 then (xt+1; yt+1) > 0, fromwhich it follows by induction that (xt; yt) > 0 for all t given (4.3).It follows from (4.2) thatyt+1 = bc (xt + 2yt)(xt + 2yt) + b < bc 8xt; yt 2 (0;1); (4.7)so that yt < bc for all t � 1. Similarlyxt+1 < ayt + c� 8xt; yt 2 (0;1);giving xt < abc+ c� for all t � 2.Consider the solution y�(xt) of yt+1 = yt, which satis�es the equation2y2�(xt) + (xt + b(1� 2c)) y�(xt) � bcxt = 0: (4.8)Since bc > 0 there exists a unique positive real root y�(xt) for each xt.6



Lemma 1 y�(xt) is concave for xt � 0. Explicitly, it is strictly monotonicallyincreasing (with decreasing gradient) from 0 if 2c < 1 and from b(2c�1)=2 otherwise,and is bounded above by bc for t � 1.Proof. We �rst note that y�(0) = 0 or b(2c � 1)=2 only. Di�erentiating (4.8)implicitly and solving we obtaindy�(xt)dxt = bc� y�(xt)4y�(xt) + (xt + b(1� c)) = bc� y�(xt)q(xt � b(c� 1))2 + 8bcxt :It follows from condition (4.7) that dy�(xt)dxt > 0 8t � 1. By di�erentiating again itis simple to show that the second derivative of y�(xt) (with respect to xt) remainsstrictly negative for all xt > 0. 2.By a similar argument we may establish that there exists a unique positive realroot x�(yt) of xt+1 = xt and thatLemma 2 x�(yt) is concave for yt � 0. Explicitly, it is strictly monotonicallyincreasing (with decreasing gradient) from 0 if c < 1 and from (c � 1)� otherwise,and is bounded above by abc+ c� for t � 2.Proof. This is immediate from calculating the derivative dx�(yt)dyt , applying (4.2)and noting that y < bc for t � 1. 2.We may now prove the followingLemma 3 A unique positive solution of (4.6) exists if and only if condition (4.5)holds.Proof. By the intermediate value theorem it is clear that y�(x) and x�(y) willintersect (in the positive quadrant of the (x; y) plane) once unless the curve y�(x)remains below x�(y) for all x; y > 0. Necessary and su�cient conditions for this(since x�(y) and y�(x) are concave) are that x�(y) and y�(x) both pass through theorigin, and dy�(x)dx ���(0;0) < dy(x�)dx� ���(0;0). After some algebra these become (the �rstby Lemmas 1 and 2): 2c < 1 and 1� ca+ c > c1� 2c : (4.9)Condition (4.5) may be rewritten as(1� c)(1� 2c) < c(a+ c): (4.10)To satisfy the �rst of (4.9) we require c < 12 , under which (4.10) rearranges to givethe converse of the second of (4.9). Condition (4.5) therefore implies the existenceof a point of intersection.If (4.5) does not hold then a � c implies c � 13 < 12 andit quickly follows that the second of (4.9) will also hold. When ��5� �3 + ��5� = 1we have intersection at the origin, so that we require (4.5) to be a strict inequality.A single point of intersection of the curves implies a unique solution to (4.6). 2.For convergence, consider t � 2 so that yt < bc, xt < abc + �c. Assume �rstthat there exist positive equilibria x�(yt) and y�(xt). We note thatyt+1 � yt = �2yt2 + (xt + b(1� 2c)) yt + bcxtxt + 2yt + b > 0 i� yt < y�(xt);7



since y�(xt) is the solution of (4.8). Furthermore, if yt > y�(xt) thenyt+1 = bc (xt + 2yt)(xt + 2yt) + b > bc (xt + 2y�(xt))(xt + 2y�(xt)) + b = y�(xt)so that yt > y�(xt) ) yt > yt+1 > y�(xt);yt < y�(xt) ) yt < yt+1 < y�(xt): (4.11)Similarly, xt > x�(yt) ) xt > xt+1 > x�(yt);xt < x�(yt) ) xt < xt+1 < x�(yt): (4.12)We may now prove the �nal set of lemmas to complete Theorem 1.For each t � 0, consider the four regionsI = �(xt; yt) : yt � y�(xt); xt � x�(yt)	;II = �(xt; yt) : yt > y�(xt); xt < x�(yt)	;III = �(xt; yt) : yt � y�(xt); xt � x�(yt)	;IV = �(xt; yt) : yt < y�(xt); xt > x�(yt)	;within the bounds given by (4.4). In what follows we need only consider boundedinitial conditions since (xt; yt) is in one of the four regions for all t � 2 by (i).Lemma 4 If (4.5) holds then there exists � > 0 such that for every T > 0 thereexists t� > T such that xt� + yt� � �.Proof. For a contradiction assume that given � > 0 there exists T > 0 such thatxt� + yt� < � for all t > T . We linearise (4.2) about the origin, giving�xt+1yt+1 � = � c a+ cc 2c ��xtyt � :Linear stability is determined by roots of the the characteristic equationC(�) = �2 � 3c�+ c(c� a);which satis�es C ! +1, �!1. Now,C(1) = c2 � (3 + a)c+ 1 = 1� ��5�(3 + ��5) < 0by (4.5), so that there exists a real root �c > 1 of C(�) and, hence, the origin isan unstable equilibrium. Thus (xt; yt) cannot tend to (0; 0) for all solutions withinitial conditions of the form (4.3). 2.Lemma 5 If (4.5) holds then any solution with initial conditions (xt; yt) such that(xt � x�(yt)) (yt � y�(xt)) > 0 converges monotonically to (x�; y�).Proof. We show the proof for (xt; yt) 2 I; the proof for region III is similar.It is clear by (4.11), (4.12) that any solution with initial conditions inside eitherregion I or III will remain in that respective region for all time, since(xt; yt) 2 I ) xt � x�(yt)yt � y�(xt) ) xt � xt+1 � x�(yt)yt � yt+1 � y�(xt)) y�(xt) � y�(xt+1)x�(yt) � x�(yt+1) ) xt+1 � x�(yt+1)yt+1 � y�(xt+1) ) (xt+1; yt+1) 2 I8



Since x�(yt) and y�(xt) are monotonic increasing with a unique positive inter-section (x�; y�), it follows thatxt > x�(yt);yt > y�(xt); ) y�(xt) > y�;x�(yt) > x�; 8t � t3: (4.13)To show this, consider the setf(x; y) : x�(y) � x < abc+ �c; y�(x) � y < bc; x+ y � �g;with x� and y� as in Lemmas 1 and 2. Without loss of generality we can choose� > 0 small enough so that (x�; y�) is in this set. De�ne xmin as the minimum valueof x within the set, which we know exists since x� and y� are bounded below. Sincey� is monotonic increasing in x, the minimum value of y within the set isymin = y�(xmin): (4.14)Similarly xmin = x�(ymin): (4.15)Since (x�; y�) is the unique positive intersection point of x� and y�, solving (4.14)and (4.15) simultaneously impliesxmin = x�; ymin = y�;and the proof of (4.13) is complete.Therefore, by (4.11), (4.12) and the above we havext > xt+1 > x�(yt) > x� and yt > yt+1 > y�(xt) > y�;for all t � t3. The sequences fxtg13 ; fytg13 are, therefore, monotonic decreasing andbounded below, and thus converge to some limit. By Lemma 3 and 4 the uniquesolution to which (xt; yt) converges is (x�; y�), given by (4.6). 2.Lemma 6 If (4.5) holds then all solutions (xt; yt) converge to (x�; y�).Proof. First assume that there exists a solution which does not leave II for allt � tc for some tc � 0. By (4.12) and part (i) we have that fxtg1t0 is a monotonicincreasing sequence bounded above by abc + �c, and by (4.11) and part (i) thatfytg1t0 is a monotonic decreasing sequence bounded below by 0. Therefore, bothsequences converge, by uniqueness, to (x�; y�). Similarly, it may be shown that anysolution which remains in region IV will also converge to the equilibrium. Note thatwe do not claim that such solutions exist, only that any solutions which remain inII (or IV) converge.Since all solutions which enter I or III remain there (and converge, by Lemma 5),it only remains to consider solutions which alternate between II and IV for all time.Consider the time t0 at which such a solution �rst enters II . We need to considerthree cases, although the method of proof in each case is similar.9



Case 1: Assume that xt0 < x�; yt0 < y�: (4.16)Given the monotonicity properties of x� and y� de�ned in Lemmas 1 and 2, itimmediately follows that(x; y) 2 II \ f(x; y) : x < x�; y < y�g ) x < x�(y�(x)) < x�: (4.17)It is simple to show this graphically, and follows from the fact that the curve y�(x)is above the curve x� (w.r.t. x) in this region. Since (xt0 ; yt0) 2 II , we havext0 < xt0+1 < x�(yt0); yt0 > yt0+1 > y�(xt0)De�ne t0 as the next time the solution enters IV , so that(xt; yt) 2 B0 = �xt0 ; x�(yt0)�� �y�(xt0); yt0�for all t0 � t � t0.Let t1 be the �rst return to II. Since (xt; yt) 2 IV for t0 � t < t1 by de�nition,xt < xt0 < x�(yt0);and xt > x�(y�(xt0)) > xt0using (4.17). Similarly, we may show that y�(xt0 ) < yt < yt0 for t0 � t < t1, whichcombine to give (xt; yt) 2 B0; for all t0 � t < t1:It can be shown by induction that if ti are the times the solution re-enters II ,then (xt; yt) 2 Bi; for all ti � t < ti+1;where Bi is the box de�ned by:Bi = �xti ; x�(yti)�� �y�(xti); yti�: (4.18)We will prove convergence of the solution to the equilibrium by showing theconvergence of the series of boxes fBig to the point (x�; y�). Since the diagonal to(xti ; yti) of Bi is the point (x�(yti); y�(xti)), we can generate a new box such that(xti+1 ; yti+1) 2 �x�(y�(xti)); x�(yti)�� �y�(xti ); y�(x�(yti))�: (4.19)We �rst show that if (xti ; yti) satis�es (4.17), then (xti+1 ; yti+1) does too. Since(xti+1 ; yti+1) 2 II by de�nition,xti+1 < x�(yti+1): (4.20)10



The monotonicity of x�, together with yti+1 < y�(x�(yti)) by (4.19) implies thatx�(yti+1) < x�(y�(x�(yti))): (4.21)Since yti < y� ) x�(y�(x�(yti))) < x�(y�(x�(y�))) = x�; (4.22)we see that (4.17) implies, using (4.20), (4.21) and (4.22)), thatxti+1 < x� (4.23)also. We can similarly show that yti+1 < y�.Since (xt0 ; yt0) satisfy (4.16), and hence (4.17), we have shown by induction that(xti ; yti) satisfy (4.17) for all i. This states thatxti < x�(y�(xti))which, together with x�(y�(xti)) < xti+1by (4.19), implies that the sequence fxtig1i=0 is monotonic increasing.The sequence is bounded above since all points satisfy (4.17) and, therefore,converges to some limit xl. It follows that fy�(xti )g is also monotonic increasingand bounded above (by y�) and converges to some limit yl. The limits must satisfyx�(y�(xl)) = xl;which has the solutions xl = x� or xl = 0. The latter is clearly not valid since x0 > 0.Similarly, we may show that yti converges to y� (and hence (x�(yti) ! x�). Thelower and upper bounds of our boxes Bi thus converge monotonically to the point(x�; y�). Since for every i there exists a ti such that for all t � ti, (xt; yt) 2 Sj�i Bj ,convergence for the series (xt; yt) is proven.Case 2: Assume that the solution (xt; yt) satis�es xt0 > x�, yt0 > y�, where t0is the time it �rst enters region II. The proof is identical, but with monotonicallydecreasing bounds on Bi.Case 3: Assume that xt0 < x�; yt0 > y�. We again consider the return timest1; t2; : : : for which the solution re-enters region II . More speci�cally, we mayconsider only those solutions whose return paths satisfyxti < x�; yti > y�; i � 0;since otherwise the solution enters one of the regions considered in Case 1 and 2above and convergence is already proven.Therefore we consider solutions which satisfy(xti ; yti) 2 II \ f(xti ; yti) : xti < x�; yti > y�g ; i � 0; (4.24)11



and show that convergence occurs through strictly nested boxes Bi. In an analogousfashion to (4.17), we can derive the property(x; y) 2 II \ f(x; y) : x < x�; y > y�g ) x < x�(y�(x)) < x�;y > y�(x�(y)) > y�: (4.25)It follows from observing that(xti+1 ; yti+1) 2 [x�(y�(xti)); x�(yti)] � [y�(xti ; y�(x�(yti)))] ;that fxtig1i=0 is monotonic increasing, sincexti+1 > x�(y�(xti)) > xtiby (4.25). Similarly we may show that fytig1i=0 is monotonic decreasing.The sequences fxtig1i=0 and fytig1i=0 are bounded above and below respectivelyby (4.24), so that each converge to some limit. By uniqueness, the limits are x� andy�. The interim time steps may be included using boxes Bi by a similar argumentto that used above, completing the proof that (xt; yt) ! (x�; y�), t ! 1 for Case3. Note that we do not need to deal with region IV separately, since any alternatingsolution is considered from the time it �rst enters II . 2.Lemma 7 Assume that condition (4.5) does not hold. Then all solutions (xt; yt)converge to (0; 0).Proof. The proof of this is similar to that above and is not shown here. In thiscase we have a unique steady state at (0; 0). The case of equality in (4.5) results inconvergence to an equilibrium which is the origin and therefore also gives extinction.2. The proof of our theorem is complete. 2.It may be noted that although environmental limitations (parameterised by �and �) a�ect the size of the population, they do not determine persistence, unlessone considers stochastic e�ects at low population levels. Criterion for extinction areof the intuitive form � < �c (see Section 7 for details).5. Temporal population distributionGiven initial conditions (B01 ; B02 ; B06) we may determine the dynamics of thesystem through (4.2), and the long term behaviour by Theorem 1. The number ofeggs laid in each interval of the year is then given by (3.3), from which it is possibleto determine the slug population throughout the year. Explicitly, if Sti is the totalnumber of slugs (J, M and A but not E) at interval i in year t, thenSti = �i�1Bt0 + i�1Xj=1 �i�jBtj ; i = 1; : : : ; 6: (5.1)12



(where we have considered the simpli�cation (3.1) for notational convenience). Fur-thermore, we may calculate the post-season population (mature slugs about tooverwinter) by: St7 = �4 ��Bt1 + Bt2� ; (5.2)so that the adult slug population that survives the winter is given bySt+11 = Bt+10 = ��St7St7 + � :Note that Sti (i = 1; :::; 7) are also functions of x and y only. We de�ne S(t; i) = Stias the annual population distribution.It is interesting to note that while the solution (x�; y�) may simply be a globallyattractive positive equilibrium, the temporal population distributions generated byit may exhibit a variety of behaviours depending upon the favourability of theyear. Clearly S(t; i) converges to a globally stable periodic solution, but the annualdistribution may exhibit one or two maxima and either grow or decay over theyear. Examples of di�erent temporal population distributions are given in Fig. 2.These are the steady state solutions (i; S�i ) which result from the convergence of(xt; yt) to (x�; y�). The variation in temporal population distribution can be broughtabout by a small change in the survival probability �. In other words, we maywitness markedly di�erent behaviour in the temporal population distribution simplybecause of small annual variations in the prevailing environmental factors. We areprimarily interested in the steady state temporal distribution of the population, nottransient e�ects. The results shown are therefore of the equilibrium distribution, towhich all solutions rapidly converge .These results compare favourably with available �eld data [6;15], where thepopulation exhibits both monotonic and multi-peak distributions in a given year,including very sharp increases and decreases in the population. Increasing thenumber of peaks in our model to a number greater than two requires � to varywithin the season (�i 6= � for some i). This is discussed in section 6.Fig. 2 near here (see end).6. Parameter variation6.1. SeasonalAlthough analysis is only shown for the case (3.1) for simplicity, qualitativelysimilar results are obtainable for general parameters which do not remain constantthroughout the year. Thus for example, we might expect the survival probabilitiesof individuals in spring (�1) to be greater than at the height of summer (�4).We again �nd that the system either attains a stable steady temporal populationdistribution or results in extinction. In addition, however, the possible stable annualdistributions (as shown in Fig. 2 for the above model) are extended, with a greaternumber of maxima possible during the year, as sometimes observed in the data [6].13



6.2. Between seasonsIn temperate climates there are signi�cant variations in climatic conditions be-tween di�erent years, and these will in
uence the population dynamics (such assurvival and how many eggs survive per laying adult). We therefore consider vari-ations in the model parameters, based upon the e�ects of the average annual rainfall and temperature in consecutive years. Fig. 3 shows the resultant populationfor a ten year period, with relatively small variations in the model parameters be-tween years (but not within seasons), based on basic biological assumptions. Forexample, egg production is reduced when the temperature is too high or too low(for more details on these aspects of the biology of D. reticulatum see [13;14;15;16];for appropriate modelling approaches see [11]). We do not, of course, have a con-vergent solution (except the possibility of extinction), since in each individual yearsolutions will be converging to a (generally) di�erent steady temporal populationdistribution. Fig. 3 near here (see end).7. E�ect of treatmentNecessary and su�cient conditions for extinction of the population are givenin Theorem 1, although it should be noted that the positive equilibrium (x�; y�)approaches the origin arbitrarily closely as equality is approached. If we de�ne� = ��5 (7.1)as the limiting annual survival probability (for large populations), then extinctionwill occur, by (4.5), if and only if � < �c, where�c = 1� (� + 3) ; (7.2)which we may alternatively express as � � �c where�c = p9 + (4=�)� 32 > 0:This means that the population would become extinct if the annual survival proba-bility dropped (and stayed for su�cient time) below some critical value. This valueis determined by, and monotonically decreasing with respect to, the egg production�. The extinction rate is given by � = j1��cj, where �c is the principle eigenvalue atthe origin. Explicitly, the characteristic equation given by linearising the continuousversion of (4.2) about (0; 0) is�2 � 3c�� c(a� c) = 0;with largest eigenvalue �c = ��2 �p9 + (4=�) + 3� = ��c ;14



giving � = 1� ��c ; (� < �c):In this section we consider the e�ect of applying some protective treatment(biological or chemical) to crops, designed to reduce the survival rate of slugs.Untreated populations would generally be expected to have a survival rate � > �c,that is, under normal conditions they do not go extinct. We consider reducing thesurvival rate in any given time interval i where treatment takes place by a factor�i, that is, �i ! �i�i;�i ! �6�i; 0 � �i � 1; (i = 1; : : : ; 6) (7.3)where �i = 1 is obviously equivalent to no treatment in interval i.If we assume that treatment a�ects slugs and eggs equally, then it immediatelyfollows that the annual survival rate following treatments will be given by �� =��1�2�3�4�5�6 (� �). If �� < �c then the treatment is su�cient to eliminate thepopulation.Most treatments, however, are aimed at slugs, and do not directly a�ect eggs.We therefore need to consider the case where the survival rate in a time interval inwhich treatment is applied is reduced to the form (7.3) for hatched slugs only, andremains unchanged for newly laid batches. We will refer to treatments implementedat the end of each time interval i as reducing the proportion of slugs in each batchthat survive to the next interval by a factor �i. The survival of eggs laid in thatinterval are not a�ected, nor the rate at which they are laid.To do this we need to consider a more general form of the model (3.4), namelythe system of di�erence equationsxt+1 = �v (xt + yt)xt + yt + � + uyt;yt+1 = wb (xt + 
yt)(xt + 
yt) +B ; u; v; w; 
 > 0: (7.4)Parameter values for the untreated system (3.4) and the case when treatmentsare applied at various times are given in table 1, but the following theorem holdsfor all u; v; w; 
;B > 0.Theorem 2 The solution (0; 0) of system (7.4) is globally attractive if and onlyif v + 
w � 2 and (v + 
w) + w (u+ v(1� 
)) � 1: (7.5)The proof is similar to that of section 4 and the analysis is not given here.Note that in the absence of treatment, criteria reduce to the converse of (4.5).Table 1 near here (see end).Theorem 3 The application of treatment will result in extinction if and only if� � �� = 1��3�4�5 ��1�6 + �2 + �2�6 + ��1�22 �3�4�5�6� : (7.6)15



Proof. We �rst show that the �rst condition of Theorem 2 is always satis�ed by ourparameters when the second is, and then simplify this stronger (second) conditionto the form (7.6).Lemma 8 If u; v; w; 
;B are as in Table 1, then(v + 
w) + w (u+ v(1� 
)) � 1 ) v + 
w � 2:Proof. The case for no treatment is proven separately in Theorem 1, although itis a corollary of the following when �i = 1 (i = 1; : : : ; 6).We may rewrite the above two conditions as w < w1,w < w2 respectively (sincehere 
 + u+ v � 
v > 0), wherew1 = 1� v
 + u+ v � 
v and w2 = 2� v
 :Now w1 = 1� v
 + ��1�2�3�4�5 < 1� v
 < w2;so that w < w1 ) w < w2 for all w. 2.Substituting in our explicit parameters from Table 1, we have that1 � v + 
w + w (u+ v(1� 
)) = ���3�4�5 ��1�6 + �2 + �2�6 + ��1�22 �3�4�5�6� ;which is equivalent to (7.6). 2.We note that the threshold �c given by (7.2) may be derived by considering�i = 1, i = 1; 2; : : : ; 6 in �� given by (7.6).Theorem 4 For a single application � applied in only one time interval i:�i = �; �j = 1; for j 6= i; j = 1; : : : ; 6;the corresponding extinction threshold ��i satisfy:(i) �c < ��1 < ��6 < ��2 < ��3 = ��4 = ��5 , 0 < � < 1;(ii) ��i = �c when � = 1.Proof. By substituting each i = 1; : : : ; 6 into (7.6) in turn, we derive:��1 = 1� (2 + �(1 + �)) ;��2 = 1� (1 + �(2 + ��)) ;��k = 1�� (3 + ��) ; k = 3; 4; 5;��6 = 1� (1 + �(2 + �)) ;and (ii) is a direct consequence of considering lim�!1 ��i . Part (i) follows from� < 1 so that1�c � 1��1 = �(3 + �)� �(2 + � + ��) = �(1� ��) > 0 ) �c < ��1 ;1��1 � 1��6 = �(2 + � + ��) � �(1 + 2� + ��) = �(1� �) > 0 ) ��1 < ��6 ;1��6 � 1��2 = �(1 + 2� + ��)� �(1 + 2� + ��2) = �2�(1� �) > 0 ) ��6 < ��2 ;1��2 � 1��3 = �(1 + 2� + ��2)� ��(3 + ��) = �(1� �) > 0 ) ��2 < ��3 :16



2.Corollary 1 Complete elimination(i.e. � = 0) of slugs in a time interval i willresult in extinction:(i) unconditionally for i = 3; 4; 5;(ii) for � < 1=� for i = 2; 6;(iii) for � < 1=2� for i = 1.Proof. This follows immediately by considering lim�!0 ��i (i = 1; : : : ; 6). 2.The above theorems give a clear order of priority for the time intervals thatshould be selected for treatment, if the aim is for the long term elimination of slugs.The total elimination of slugs is not su�cient to guarantee extinction, exceptin that part of the season after all maturing slugs have hatched but before over-wintering eggs have been laid. At all other times the delay in reproduction due toegg development can result in the re-emergence of individuals. Since a reductionin the population, rather than extinction, is often the more likely outcome in the�eld, treatment regimes are often applied for short term crop protection, ratherthan overall population control. Results here however show that, since all batchesBti (and hence the population in each interval S(t; i)) are monotonic increasing in xtand yt, and x� and y� are monotonic decreasing in each �i, it is the latter strategywhich will give better protection.Treatments should therefore attempt to control the overall slug population,rather than simply dealing with the large numbers which appear at certain timesof the year. The situation is obviously more complicated when there are signi�cantvariations in the parameters (both between years and within a season), or when an-nually repeated treatments have not been applied, so that in this case other shortterm strategies may be advantageous.8. Alternative model formulationsThe model considered in this paper is based on a strongly de�ned season for slugactivity, with a harsh winter which eliminates a large proportion of the individuals.If we are considering the possibility of highly favourable seasons, it is natural toextend the model to the case where more individuals survive. As an example wehave considered the case where many more eggs laid late in the season (and notjust at the end) may lie dormant until the next season. Instead of individuals laidin time interval 5 hatching therefore, they remain eggs and survive the winter (withrate �5) to become part of Batch 1, similar to the eggs laid in Batch 6. Resultsare very similar, although for the special case (3.1) only a single peak per seasonis possible. Solutions again either attain a stable steady population distribution orextinction, and the analysis follows in the same way.To extend the model further we could consider juveniles of all (or most) classessurviving the winter, allowing for a continuous population. At this point, however,the concept of a speci�c slug breeding season becomes invalid, and the analysis17



developed here is no longer relevant. Thus, although the seasonal model allows foranalytical progress not available to other models such as [11;12], the assumptionrequired for its simpli�ed formulation is a necessary one.9. DiscussionIn this paper we have constructed and analysed a simple model for slug popu-lations, based on the predominant species D. reticulatum. By simply consideringthe number of eggs laid during each breeding season, a model has been developedthat may be reduced to a set of two di�erence equations. Conditions are derived forextinction, or for the persistence of a stable steady temporal population distribu-tion, including the e�ect of applying control strategies at di�erent times of the year.Egg production is used to determine the whole population (based on survival rates)without further consideration of adult dynamics, with the additional advantage thatthe age distribution of the slug population is also known.The observed behaviour is qualitatively similar to available �eld data [6], espe-cially if one allows for the e�ect of minor variations in the favourability of individualyears. It is signi�cant that large variations in the size and dynamics of the popula-tion in di�erent years may be caused by small variations in the parameters, due toslight changes in the temperature and rainfall (and thus ground humidity) betweenconsecutive years. Thus these relatively small variations in climate may result inthe large changes in the population dynamics observed in the �eld.Results here are in agreement with those found in other types of model [11].While the concept of a single season is at best only an approximation of the truedynamics, we feel it has allowed for analytical progress while remaining relevant tothe original biological problem.10. AcknowledgementsThis research was funded by the Engineering and Physical Sciences ResearchCouncil (UK) grant number:GR/N00616.The authors wish to thank D. Glen, D. Bohan and co-workers at the Institute forArable Crop Research for collaborative assistance and correspondence concerningthe biology and dynamics of slugs, and for supplying their most recent (and yetunpublished) �eld data for direct comparison with the theory. The authors wouldalso like to thank an anonymous referee for valuable comments and suggestions,including the addition of Lemma 4.References[1] Altena, C.O. van R.& Smith, J.B. : Notes on introduced slugs of the families Limaci-dae and Milacidae in Australia, with two new records. Journal of the MalacologicalSociety of Australia 3 (1975) 63-80.[2] Bohan, D. Personal communication. 18
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Tables Untreated Treatment �i in interval i.u �(�+ 1) ��1 (�2 + �) �3�4�5v �� ���2�3�4�5w �� ���2�3�4�5�6
 2 1 + �1=�2B �=�5 �= ��5�2�3�4�5�Table 1. The model parameters for system (7.4) for treatment applied at di�erent times of the year,with the untreated system is included for comparison. Note that applications in time intervals 3; 4and 5 all have identical e�ect, and that when �i = 1 (i = 1; : : : ; 6), all parameters are equivalentto no treatment being applied.
Figure LegendsFig. 1. Eggs Ei laid in time interval i hatch into juveniles Ji which may eventually develop intomature slugs Mi, and overwinter to become older adults A0 (su�x 0 denotes that individuals werelaid and hatched in a previous year). An adult in A0 lays �i eggs in interval i, while mature slugs(M) lay at a di�erent rate, re
ecting their di�erent size which may be a�ected by overcrowding(see text). Throughout the season, individuals of all states survive the time interval i with rate �i.Adults (A) and juveniles (J) do not survive the winter (being too old and too young respectively),but mature slugs (M) or dormant eggs (E) from batches i survive with rate ~�i or �i respectively.Fig. 2. Examples of the steady state distribution (given by Theorem 1) of (5.1), (5.2) for di�erentvalues of the survival probabilities 0 � �; � � 1. Small changes in the favourability of the seasonresult in qualitatively di�erent behaviour (here �; � = 0:7� 0:2).Fig. 3. The total slug population S(i; t) varying with time, where the model parameters are allowedto vary slightly with the climatic conditions. Here we have considered the e�ect of average annualrainfall and temperature (in Britain) for the period 1991-1997 inclusive. Explicitly, we have � =0:5+0:4f n(rain); � = 0:5+0:2f n(temp); � = 1�104; � = 3�104; � = 0+5f n(rain)f n(temperature)where the functions f n(h) are normalized linear functions of the form (h�hmin)=(hmax �hmin).
For �gures see end 20
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