154 research outputs found

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Search for the jet-induced diffusion wake in the quark-gluon plasma via measurements of jet-track correlations in photon-jet events in Pb+Pb collisions at sNN=5.02TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet-track correlations in photon-jet events, using 1.72 nb^(-1) of Pb+Pb data at root(sNN) = 5.02 TeV recorded with the ATLAS detector at the LHC. Events with energetic photon-jet pairs are selected, where the photon and jet are approximately back-to-back in azimuth. The angular correlation between jets and charged-particle tracks with transverse momentum (pT) in the range 0.5-2.0 GeV in the hemisphere opposite to the jet, | phi(jet,track)| > pi/2, is measured as a function of their relative pseudorapidity difference, | eta(jet,track)|. In central Pb+Pb collisions, these correlations are predicted to be sensitive to the diffusion wake in the quark-gluon plasma resulting from the lost energy of high-pT partons traversing the plasma, with a characteristic modification as a function of | eta(jet,track)|. The correlations are examined with different selections on the jet-to-photon pT ratio to select events with different degrees of energy loss. No diffusion wake signal is observed within the current sensitivity and upper limits at 95% confidence level on the diffusion wake amplitude are reported

    Test of lepton flavour universality in W-boson decays into electrons and τ-leptons using pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of the ratio of the branching fractions, Rτ/e = B(W → τν)/B(W → eν), is performed using a sample of W bosons originating from top-quark decays to final states containing τ-leptons or electrons. This measurement uses pp collisions at s =13TeV, collected by the ATLAS experiment at the Large Hadron Collider during Run 2, corresponding to an integrated luminosity of 140fb−1. The W → τντ (with τ → eνeντ) and W →eνe decays are distinguished using the differences in the impact parameter distributions and transverse momentum spectra of the electrons. The measured ratio of branching fractions Rτ/e = 0.975±0.012(stat.)±0.020(syst.), is consistent with the Standard Model assumption of lepton flavour universality in W-boson decays

    Configuration, Performance, and Commissioning of the ATLAS b-jet Triggers for the 2022 and 2023 LHC data-taking periods

    Get PDF
    In 2022 and 2023, the Large Hadron Collider produced approximately two billion hadronic interactions each second from bunches of protons that collide at a rate of 40 MHz. The ATLAS trigger system is used to reduce this rate to a few kHz for recording. Selections based on hadronic jets, their energy, and event topology reduce the rate to O(10) kHz while maintaining high efficiencies for important signatures resulting in b-quarks, but to reach the desired recording rate of hundreds of Hz, additional real-time selections based on the identification of jets containing b-hadrons (b-jets) are employed to achieve low thresholds on the jet transverse momentum at the High-Level Trigger. The configuration, commissioning, and performance of the real-time ATLAS b-jet identification algorithms for the early LHC Run 3 collision data are presented. These recent developments provide substantial gains in signal efficiency for critical signatures; for the Standard Model production of Higgs boson pairs, a 50% improvement in selection efficiency is observed in final states with four b-quarks or two b-quarks and two hadronically decaying tau-leptons

    Search for vector-like leptons coupling to first- and second-generation Standard Model leptons in pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    A search for pair production of vector-like leptons coupling to first- and secondgeneration Standard Model leptons is presented. The search is based on a dataset of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 140fb-1. Events are categorised depending on the flavour and multiplicity of leptons (electrons or muons), as well as on the scores of a deep neural network targeting particular signal topologies according to the decay modes of the vector-like leptons. In each of the signal regions, the scalar sum of the transverse momentum of the leptons and the missing transverse momentum is analysed. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No significant excess above the Standard Model background expectation is observed and limits are set at 95% confidence level on the production cross-sections of vector-like electrons and muons as a function of the vector-like lepton mass, separately for SU(2) doublet and singlet scenarios. The resulting mass lower limits are 1220GeV (1270GeV) and 320GeV (400GeV) for vector-like electrons (muons) in the doublet and singlet scenarios, respectively

    Measurements of WH and ZH production with Higgs boson decays into bottom quarks and direct constraints on the charm Yukawa coupling in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A study of the Higgs boson decaying into bottom quarks (H → b ̄ b) and charm quarks (H → c ̄ c) is performed, in the associated production channel of the Higgs boson with a W or Z boson, using 140fb−1 of proton-proton collision data at √s = 13TeV collected by the ATLAS detector. The individual production of WH and ZH with H → b ̄ b is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical f iducial regions. The search for the H → c ̄ c decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in |κc| < 4.2 at 95% confidence level. Combining the H → b ̄ b and H → c ̄ c measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level

    Farming, foreign holidays, and vitamin D in Orkney

    Get PDF
    Orkney, north of mainland Scotland, has the world's highest prevalence of multiple sclerosis (MS); vitamin D deficiency, a marker of low UV exposure, is also common in Scotland. Strong associations have been identified between vitamin D deficiency and MS, and between UV exposure and MS independent of vitamin D, although causal relationships remain to be confirmed. We aimed to compare plasma 25-hydroxyvitamin D levels in Orkney and mainland Scotland, and establish the determinants of vitamin D status in Orkney. We compared mean vitamin D and prevalence of deficiency in cross-sectional study data from participants in the Orkney Complex Disease Study (ORCADES) and controls in the Scottish Colorectal Cancer Study (SOCCS). We used multivariable regression to identify factors associated with vitamin D levels in Orkney. Mean (standard deviation) vitamin D was significantly higher among ORCADES than SOCCS participants (35.3 (18.0) and 31.7 (21.2), respectively). Prevalence of severe vitamin D deficiency was lower in ORCADES than SOCCS participants (6.6% to 16.2% p = 1.1 x 10(-15)). Older age, farming occupations and foreign holidays were significantly associated with higher vitamin D in Orkney. Although mean vitamin D levels are higher in Orkney than mainland Scotland, this masks variation within the Orkney population which may influence MS risk

    Search for light neutral particles decaying promptly into collimated pairs of electrons or muons in pp collisions at √s = 13TeV with the ATLAS detector

    Get PDF
    A search for a dark photon, a new light neutral particle, which decays promptly into collimated pairs of electrons or muons is presented. The search targets dark photons resulting from the exotic decay of the Standard Model Higgs boson, assuming its production via the dominant gluon-gluon fusion mode. The analysis is based on 140 fb-1 of data collected with the ATLAS detector at the Large Hadron Collider from proton-proton collisions at a center-of-mass energy of 13 TeV. Events with collimated pairs of electrons or muons are analysed and background contributions are estimated using data-driven techniques. No significant excess in the data above the Standard Model background is observed. Upper limits are set at 95% confidence level on the branching ratio of the Higgs boson decay into dark photons between 0.001% and 5%, depending on the assumed dark photon mass and signal model

    Combination of searches for Higgs boson decays into a photon and a massless dark photon using pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for Higgs boson decays into a visible photon and a massless dark photon (H → γγd) is presented using 139 fb−1 of proton-proton collision data at a centre-of-mass energy of √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on the Standard Model Higgs boson decay branching ratio is determined to be B(H → γγd) < 1.3% (1.5)%. The search is also sensitive to higher-mass Higgs bosons decaying into the same final state. The observed (expected) 95% confidence level limit on the cross-section times branching ratio ranges from 16 fb (20 fb) for mH = 400 GeV to 1.0 fb (1.5 fb) for mH = 3 TeV. Results are also interpreted in the context of a minimal simplified model

    Search for single-production of vector-like quarks decaying into Wb in the fully hadronic final state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract A search for T and Y vector-like quarks produced in proton-proton collisions at a centre-of-mass energy of 13 TeV and decaying into Wb in the fully hadronic final state is presented. The search uses 139 fb −1 of data collected by the ATLAS detector at the LHC from 2015 to 2018. The final state is characterised by a hadronically decaying W boson with large Lorentz boost and a b-tagged jet, which are used to reconstruct the invariant mass of the vector-like quark candidate. The main background is QCD multijet production, which is estimated using a data-driven method. Upon finding no significant excess in data, mass limits at 95% confidence level are obtained as a function of the global coupling parameter, κ. The observed lower limits on the masses of Y quarks with κ = 0.5 and κ = 0.7 are 2.0 TeV and 2.4 TeV, respectively. For T quarks, the observed mass limits are 1.4 TeV for κ = 0.5 and 1.9 TeV for κ = 0.7.</jats:p
    corecore