1,576 research outputs found

    Evolution of plasma turbulence excited with particle beams

    Full text link
    Particles ejected from the Sun that stream through the surrounding plasma of the solar wind are causing instabilities. These generate wavemodes in a certain frequency range especially within shock regions, where particles are accelerated. The aim of this paper is to investigate of amplified Alfvenic wavemodes in driven incompressible magnetohydrodynamic turbulence. Results of different heliospheric scenarios from isotropic and anisotropic plasmas, as well as turbulence near the critical balance are shown. The energy transport of the amplified wavemode is governed by the mechanisms of diffusion, convection and dissipation of energy in wavenumber space. The strength of these effects varies with energy and wavenumber of the mode in question. Two-dimensional energy spectra of spherical k-space integration that permit detailed insight into the parallel and perpendicular development are presented. The evolution of energy injected through driving shows a strong energy transfer to perpendicular wavemodes. The main process at parallel wavemodes is the dissipation of energy in wavenumber space. The generation of higher harmonics along the parallel wavenumber axis is observed. We find evidence for a critical balance in our simulations.Comment: Accepted for publication in A&

    Particle scattering in turbulent plasmas with amplified wave modes

    Get PDF
    High-energy particles stream during coronal mass ejections or flares through the plasma of the solar wind. This causes instabilities, which lead to wave growth at specific resonant wave numbers, especially within shock regions. These amplified wave modes influence the turbulent scattering process significantly. In this paper, results of particle transport and scattering in turbulent plasmas with excited wave modes are presented. The method used is a hybrid simulation code, which treats the heliospheric turbulence by an incompressible magnetohydrodynamic approach separately from a kinetic particle description. Furthermore, a semi-analytical model using quasilinear theory (QLT) is compared to the numerical results. This paper aims at a more fundamental understanding and interpretation of the pitch-angle scattering coefficients. Our calculations show a good agreement of particle simulations and the QLT for broad-band turbulent spectra; for higher turbulence levels and particle beam driven plasmas, the QLT approximation gets worse. Especially the resonance gap at μ = 0 poses a well-known problem for QLT for steep turbulence spectra, whereas test-particle computations show no problems for the particles to scatter across this region. The reason is that the sharp resonant wave-particle interactions in QLT are an oversimplification of the broader resonances in test-particle calculations, which result from nonlinear effects not included in the QLT. We emphasise the importance of these results for both numerical simulations and analytical particle transport approaches, especially the validity of the QLT. Appendices A-D are available in electronic form at http://www.aanda.or

    Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Get PDF
    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν41+ν5−1\nu_1+\nu_2+\nu_3+\nu_4^1+\nu_5^{-1} in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm−1\text{cm}^{-1}, the rotational parameter BB was 1.162222 cm−1\text{cm}^{-1}, and the quartic centrifugal distortion parameter DD was 3.998(62)×10−6cm−1\times 10^{-6} \text{cm}^{-1}, where the numbers in the parenthesis are one-standard errors in the least significant digits

    Fringe spacing and phase of interfering matter waves

    Get PDF
    We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference. We subsequently demonstrate how the phase and polarisation of the rf radiation directly control the phase of the matter wave interference and provide a semi-classical interpretation of the results.Comment: 4 pages, 3 figure
    • …
    corecore