1,790 research outputs found

    Inelastic Interaction Corrections and Universal Relations for Full Counting Statistics

    Full text link
    We analyze in detail the interaction correction to Full Counting Statistics (FCS) of electron transfer in a quantum contact originating from the electromagnetic environment surrounding the contact. The correction can be presented as a sum of two terms, corresponding to elastic/inelastic electron transfer. Here we primarily focus on the inelastic correction. For our analysis, it is important to understand more general -- universal -- relations imposed on FCS only by quantum mechanics and statistics with no regard for a concrete realization of a contact. So we derive and analyze these relations. We reveal that for FCS the universal relations can be presented in a form of detailed balance. We also present several useful formulas for the cumulants. To facilitate the experimental observation of the effect, we evaluate cumulants of FCS at finite voltage and temperature. Several analytical results obtained are supplemented by numerical calculations for the first three cumulants at various transmission eigenvalues.Comment: 10 pages, 3 figure

    Trapped modes in zigzag graphene nanoribbons

    Full text link
    We study a scattering on an ultra-low potential in zigzag graphene nanoribbon. Using mathematical framework based on the continuous Dirac model and augumented scattering matrix, we derive a condition for the existence of a trapped mode. We consider the threshold energies where the continuous spectrum changes its multiplicity and show that the trapped modes may appear for energies slightly less than a threshold and its multiplicity does not exceeds one. We prove that trapped modes do not appear outside the threshold, provided the potential is sufficiently small

    Coupled plasmon - phonon excitations in extrinsic monolayer graphene

    Get PDF
    The existence of an acoustic plasmon in extrinsic (doped or gated) monolayer graphene was found recently in an {\it ab initio} calculation with the frozen lattice [M. Pisarra {\it et al.}, arXiv:1306.6273, 2013]. By the {\em fully dynamic} density-functional perturbation theory approach, we demonstrate a strong coupling of the acoustic plasmonic mode to lattice vibrations. Thereby, the acoustic plasmon in graphene does not exist as an isolated excitation, but it is rather bound into a combined plasmon-phonon mode. We show that the coupling provides a mechanism for the {\em bidirectional} energy exchange between the electronic and the ionic subsystems with fundamentally, as well as practically, important implications for the lattice cooling and heating by electrons in graphene.Comment: 5 pages, 4 figure

    Lamplighter model of a random copolymer adsorption on a line

    Full text link
    We present a model of an AB-diblock random copolymer sequential self-packaging with local quenched interactions on a one-dimensional infinite sticky substrate. It is assumed that the A-A and B-B contacts are favorable, while A-B are not. The position of a newly added monomer is selected in view of the local contact energy minimization. The model demonstrates a self-organization behavior with the nontrivial dependence of the total energy, EE (the number of unfavorable contacts), on the number of chain monomers, NN: EN3/4E\sim N^{3/4} for quenched random equally probable distribution of A- and B-monomers along the chain. The model is treated by mapping it onto the "lamplighter" random walk and the diffusion-controlled chemical reaction of X+X0X+X\to 0 type with the subdiffusive motion of reagents.Comment: 8 pages, 5 figure

    How many quasiparticles can be in a superconductor?

    Full text link
    Experimentally and mysteriously, the concentration of quasiparticles in a gapped superconductor at low temperatures always by far exceeds its equilibrium value. We study the dynamics of localized quasiparticles in superconductors with a spatially fluctuating gap edge. The competition between phonon-induced quasiparticle recombination and generation by a weak non-equilibrium agent results in an upper bound for the concentration that explains the mystery.Comment: 8 pages, 8 figure
    corecore