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Electron-holes, phonons, and plasmons come in close proximity to each other in the low-energy range of
the excitation spectrum of two-dimensional (2D) crystals, breaking the validity of the weakly interacting-
quasiparticles picture. By including the lattice oscillations into the scheme of time-dependent density-functional
theory, we open a pathway to the ab initio treatment of the coupled low-energy excitations in 2D crystals. With the
use of graphene as an important test system, we find the strong coupling of the elementary excitations, giving rise
to new hybrid collective modes. The total (including both the electronic and ionic response) dielectric function
εtot(ω) is constructed and the picture of the low-energy excitation spectrum of graphene is redrawn.

DOI: 10.1103/PhysRevB.89.195423 PACS number(s): 73.22.Pr, 63.22.Rc, 73.20.Mf

I. INTRODUCTION

The concept of elementary excitations has proven excep-
tionally fruitful in solid-state physics, allowing the reduction
of the motion of interacting particles to that of independent
quasiparticles [1]. More realistically, the quasiparticles may
interact, although preserving their individuality provided the
interaction is weak. An important counterexample realizes
in graphene—a two-dimensional (2D) crystal comprised of a
honeycomb lattice of carbon atoms [2]—where, in the energy
range up to a few hundred meV, the electron-hole, phonon,
and plasmon spectra overlap, suggesting the strong interaction
between those elementary excitations [3–11]. The interplay of
quasiparticles is of fundamental importance in understanding
the electronic and lattice properties of 2D crystals [3], as well
as the superconductivity in 2D materials [12–14], and the 2D
heat transfer, to name only a few.

The density-functional perturbation theory (DFPT) [15],
which is an established method of the ab initio adiabatic
treatment of phonons, fundamentally fails in capturing the
dynamical nature of the coupled plasmon-phonon oscillations.
In this paper, by the use of time-dependent density-functional
theory (TDDFT), we develop and implement the fully dynamic
approach, thus fulfilling the program of the ab initio inclusion
of the interaction between the electron-hole, plasmon, and
phonon excitations on the equal footing [3]. We find the strong
coupling between the recently predicted low-energy collective
excitations of the electronic subsystem [16,17] and phonons,
which dramatically changes the spectrum of graphene, leading
to the birth of new hybrid excitation modes.

The organization of this paper is as follows. In Sec. II
we reproduce and discuss results of the uncoupled electron
and phonon motion in 2D crystals. The controversial issue
of the existence of the acoustic plasmon in graphene is also
analyzed in that section and Appendix B. In Sec. III and
Appendix C, we construct the TDDFT formalism of the cou-
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pled electronic-phononic motion in the linear (with respect to
the external field) response regime. In Sec. IV, we present and
discuss results of numerical calculations and draw conclusions
derived from the latter. In Appendix A we give a solution
to an important technical problem of retrieving the dielectric
response of a stand-alone 2D crystal from the results of the 3D
supercell calculation. In Appendix D we give the derivation
of the total (including both the electronic and ionic degrees of
freedom) dielectric function of a 2D crystal. In Appendix E
we compare with the available experimental data and with the
case of the static coupling.

II. ELECTRONIC AND PHONONIC EXCITATIONS
IN GRAPHENE

We start by presenting results of calculations of the low-
energy electronic and phononic spectra of graphene without
the coupling between the two subsystems. To make the
problem treatable, we use the supercell method, building
a fictitious 3D system by the periodic replication of the
quasi-2D crystal with the separation d between the layers.
It is, however, known that whatever large d is, for sufficiently
small wave vector q, the layers interact electrodynamically,
making the results for the substitute 3D system irrelevant to
the stand-alone 2D crystal of interest [18]. We overcome this
difficulty quite generally, expressing the 3D dielectric function
of the substitute system via the 2D dielectric function of the
original one with account of the interaction between the layers,
and then inverting the problem. This results in the relation
(see Appendix A)

1

ε2D(q,ω)
= 1 + 1

2

1
1[

1
ε3D(q,ω;d) −1

]
qd

+ 1
eqd−1

, (1)

where q and ω are the wave vector and the frequency, respec-
tively, of the laterally applied electric field, and ε3D(q,ω; d)
is the dielectric function of the substitute 3D system. The
left-hand side of Eq. (1) does not depend on d, in accordance
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FIG. 1. (Color online) Left: Energy-loss function of the mono-
layer graphene doped with 1.2 × 1014 cm−2 electrons corresponding
to the Fermi energy shift up by 1 eV. Plasmon peaks with linear
(acoustic) dispersion are dominant in the low-frequency range of
the spectra. The variation of q is along the �K direction. Right:
Dispersion of phonons (black solid lines). From bottom to top:
three acoustic phonons, z-polarized optical phonon, two xy-polarized
optical phonons, and acoustic plasmon (red symbols) dispersion. The
red dashed line is the linear best fit to the acoustic plasmon.

with the fact that it is a true characteristic of the stand-alone
2D crystal.

Our numerical calculations for the doped monolayer
graphene employ the full-potential linear augmented plane-
wave (FP-LAPW) code Elk [19]. The local-density approx-
imation to the exchange-correlation (xc) potential [20] was
used [21]. We have carried out calculations with d = 30, 60,
and 100 a.u., producing, after the use of Eq. (1), practically
identical results.

In Fig. 1, left panel, the energy-loss function of graphene
is plotted for a number of equidistant values of the wave
vector. The calculation with the carbon atoms fixed at their
equilibrium positions has been used at this stage. The acoustic
plasmon [22] can be easily recognized by the linear dispersion
of the peak with the wave vector, which is in qualitative
agreement with the recent findings obtained with the use of
the pseudopotential method [16,17]. In Fig. 1, right panel,
we plot the phonon spectra of graphene obtained by DFPT
together with the acoustic plasmon dispersion derived from the
energy-loss function in the left panel. Acoustic plasmon and
optical phonons dispersion curves intersect, which suggests
their interaction and constitutes the motivation for the study of
the coupled modes.

III. COUPLED PLASMON-PHONON MODES

We treat the problem of coupled plasmon-phonon os-
cillations within the dynamic (frequency-dependent) linear-
response theory for both electrons and ions: self-consistently,
ions are driven by an external probing ac electric field and
the Coulomb field of moving electrons, and, in turn, electrons

move under the action of the external field and the dynamic
field of moving ions. Our goal is to put the coupled electron-ion
motion in terms of the density-response function χ (r,r′,ω) [or
equivalently, the nonlocal dielectric function ε(r,r′,ω)] of the
2D crystal with ions at rest in their equilibrium positions and
the dynamic matrices [15] D of the lattice.

We consider an infinite quasi-2D crystal lying in the xy

plane. The 2D lattice vectors are denoted by R, while the
position of the αth atom within the unit cell is bα . A weak
external potential of the form

δφext(r,t) = δφext(q,z,ω)ei(q·r−ωt) (2)

is applied to the system, where r is the 3D position coordinate
vector and q is the 2D wave vector. We seek for the response
including the ionic oscillations around their equilibrium
positions with the displacements given by

uαR(t) = uαR(ω)e−iωt = eα(ω)ei(q·R−ωt) (3)

with 3D amplitude vectors eα . The total Coulomb potential in
the system is

φ(r,t) = φ0(r) + δφ(r,ω)e−iωt , (4)

where φ0 is the ground-state Coulomb potential and δφ is its
first-order perturbation. The force experienced by the αth ion
in the Rth unit cell is

FαR(t) = − Zα∇φeff
αR(r,t)

∣∣
r=bα+uαR(t)+R , (5)

where Zα is the charge of the αth ion in the unit cell and φeff
αR

is the total Coulomb potential minus the self-interaction of the
(αR)th ion,

φeff
αR(r,t) = φ(r,t) − Zα

|r − bα − uαR(t) − R| . (6)

Expansion of Eq. (6) to the first order in the perturbation gives

φeff
αR(r,t) = φ0(r) − Zα

|r − bα − R| + δφ(r,ω)e−iωt

+ uαR(t) · ∇ Zα

|r − bα − R| . (7)

Further, since

φ0(r) = vext(r) −
∫

n0(r′)
|r − r′|dr′, (8)

where n0(r) is the ground-state electron particle density and
vext(r) is the equilibrium ions’ potential

vext(r) =
∑
βR

Zβ

|r − bβ − R| , (9)

we can write for the force acting on the αth ion in the 0th cell

Fα(ω) = −Zα

⎧⎨
⎩[eα(ω) · ∇] ∇

⎡
⎣ ∑

(βR)�=(α0)

Zβ

|r − bβ − R|

−
∫

n0(r′)
|r − r′|dr′

⎤
⎦ + ∇δφeff

α0(r,ω)

⎫⎬
⎭

r=bα

, (10)

where the corresponding zeroth order term has been set to
zero because ions are in their equilibrium positions in the
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crystal’s ground state. The electronic response is governed by
the equation

δφext(r,t) + δφI
b (r,t) =

∫
ε(r,r′,t − t ′)δφ(r′,t ′)dr′dt ′, (11)

where

δφI
b (r,t) = −

∑
αR

uαR(t) · ∇ Zα

|r − bα − R| (12)

is the ionic displacement bare potential and ε is the nonlocal
dielectric function of the ideal (ions at rest at equilibrium)
crystal.

Based on Eqs. (5) and (7)–(12), a rather lengthy although
straightforward algebra (see Appendix C) leads to the follow-
ing expression for the force:

Fαi(q,ω) = F ext
αi (q,ω) + F ei

αi(q,ω) −
∑
βk

Dαi,βk(q)eβk(ω)

+
∑
βk

[
Qαi,βk(q,ω) − Qαi,βk(q,0)

]
eβk(ω), (13)

where Dαi,βk are the so called dynamic matrices [23] of the
conventional DFPT [15] and

F ext
αi (q,ω) = −Zα

∑
G

ei(G+q)·bα

×
[
i(Gi + qi) + ẑi

∂

∂z

]
φext(G + q,z,ω)

∣∣∣∣
z=0

,

(14)

F ei
αi(ω) = 2πiZα

∑
GG′

∫
Yi(G + q,z)χGG′(q,z,z′,ω)

× ei(G+q)·bαφext(G′ + q,z′,ω)dz dz′, (15)

Qαi,βk(q,ω) = − (2π )2

s0

∑
GG′

ZαZβei(G+q)·bα e−i(G′+q)·bβ

×
∫

Yi(G + q,z)χGG′(q,z,z′,ω)Yk

× (G′ + q,z′)dz dz′, (16)

where χGG′ is the interacting-particles density-response func-
tion of the ideal crystal, s0 is the area of the unit cell, the vector
function Y is defined as

Y(p,z) = −e−p|z|[p̂ + iẑ sgn(z)], (17)

and hat above a vector denotes a unit vector in the correspond-
ing direction.

In Eq. (13), the first two terms are due to the dynamically
screened external force in the ideal crystal and the third term
is the statically screened restoring force of the displacement of
the ions. The fourth term contains all the effects responsible
for dynamic electron-phonon interaction. Obviously, with the
neglect of the latter (ω = 0 in the fourth term), Eq. (13) reduces
to the conventional static DFPT case [15].

With the use of Eq. (3), Newton’s second law gives for the
αth nucleus at the 0th unit cell

− Mαω2eα = Fα. (18)

Equations (13)–(18) form a 3N system of linear equations for
3N unknowns eα,i , i = 1,2,3, where N is the number of atoms
in the unit cell.

Once eα are found, the total 2D charge density is determined
as (see Appendix D)

δρ tot
2D(q,ω) = δρI

2D,b(q,ω) +
∑
G′

∫
χ0G′ (q,z,z′,ω)

× [δφext(G′+q,z′,ω)+δφI
b (G′+q,z′,ω)]dz dz′,

(19)

where δρI
2D,b is the bare charge perturbation due to the ions’

motion. Equation (19) enables us to obtain the total 2D density-
response function χ tot

2D(q,ω), and the total dielectric function
is then found by the equation

1

εtot
2D(q,ω)

= 1 + 2π

q
χ tot

2D(q,ω). (20)

Importantly, the energy exchange between the electronic
and ionic subsystems occurs as a result of their coupled motion.
The energy given away by ions to electrons per unit cell per
unit time is

W = −ω

2

∑
α

Im
(
Fext

α · e∗
α

)
. (21)

IV. RESULTS AND CONCLUSIONS

In Figs. 2 and 3, the total dielectric function of graphene
is plotted and compared with that due to the response of
the electronic subsystem only (frozen lattice). Clearly, the
electronic excitations are strongly modified by those of
the lattice whenever the former approach the energies of
the acoustic and the xy-polarized optical phonons (pure
phonons are shown by black vertical arrows) [24]. The same
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FIG. 2. (Color online) Real part of the total (including both the
electronic and ionic response) dielectric function (red solid line) and
its frozen-lattice counterpart (black dashed line). The calculation was
carried out for monolayer graphene doped with 1.2 × 1014 cm−2

electrons corresponding to the Fermi energy shift up by 1 eV. Vertical
black arrows show positions of uncoupled phonons.
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FIG. 3. (Color online) Same as Fig. 2, but for the imaginary part
of the dielectric function.

conclusions can be made by considering the total energy-loss
function plotted in Fig. 4. Interestingly, the coupling with the
xy-polarized optical phonon leads to the splitting of both the
absorption (Fig. 3) and the energy-loss (Fig. 4) peaks into
two. High-intensity narrow low-energy peaks originate from
acoustic phonons, acquiring a finite linewidth and experiencing
a considerable blueshift due to the coupling with electrons.

In Fig. 5, we plot the energy transferred per unit cell
per unit time from the ionic to the electronic subsystem of
monolayer graphene calculated by Eq. (21). We anticipate
that the process of the electrons heating by the ionic lattice
will be experimentally observable in two-terminal suspended
graphene experiments. For example, Yiğen et al. [25] re-
cently demonstrated the ability to distinguish electronic from
phononic heat conduction in a self-heated suspended device.
The associated analysis of electron-phonon scattering did not,
however, include plasmonic effects, which would be observ-
able at moderate temperatures and under ac fields near the
resonances predicted here. Here it must be also reemphasized
that thorough understanding of plasmons-phonons interactions
is particularly important in the field of superconductivity [26].

It must be noted that the advance of this work has been
possible to make owing to the simultaneous resolution of the
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to the electronic subsystem.

two major problems: (i) nonadiabatic inclusion of the ions’
motion into the scheme of the TDDFT and (ii) isolation of the
dielectric response of a stand alone quasi-2D crystal, achieved
by the elimination of the interaction between copies of the
crystal in the fictitious periodic array of the supercell geometry.
In our formalism, the motion of neither electrons nor ions is
confined to the mathematical plane, which, if otherwise, would
be a 2D model. Therefore, the results are obtained within the
full quasi-2D approach. Regarding our use of the integrated
in z-direction functions such as L2D and ε2D, it should be
noted that (i) those can be ascribed the exact meaning in the
quasi-2D case and (ii) while they are the convenient quantities
to plot, results can be presented in other forms as, e.g., the
frequency dependence of the ion’s oscillation amplitudes,
which is included as Fig. 6.

For the sake of completeness, in Fig. 7 we plot the energy-
loss function of graphene at higher energies, where the 2D
(sheet) plasmon [27,28] dominates the spectra. In this range,
plasmon and phonons practically do not couple, as can be
judged from the close coincidence of the results of calculations
with and without electron-phonon interaction. Obviously, this
is due to the relatively high frequency of the 2D plasmon
oscillation, with which phonons cannot catch up.

In conclusion, we have developed a fully dynamic ap-
proach to coupled electron-lattice vibrations in quasi-two-
dimensional crystals. By this, the electron-holes, phonons, and
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energy range than in Fig. 4. The 2D (sheet) plasmon dominates this
part of the spectra. The dotted black line represents the frozen-lattice
calculation.

plasmons are dealt with on an equal footing, making the ab
initio treatment of the low-lying excitation spectra feasible.
The method has been applied to graphene, revealing the quite
different behavior of the coupled modes compared with the
individual phonons and plasmons. We have calculated the total
wave-vector- and frequency-dependent dielectric function of
graphene with an account of both the electronic and ionic
degrees of freedom. The coupling which we found provides a
mechanism for the transfer of energy between the electronic
subsystem and the lattice. Promising pathways of the cooling
of the lattice by the electronic subsystem can be clearly
previewed.
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APPENDIX A: 2D DIELECTRIC RESPONSE
FROM A 3D SUPERCELL CALCULATION

Let us consider a periodic array of identical quasi-
2D crystals with the period d. Let χGG′(q,z,z′,ω) be the
(interacting-particles) density-response function of a single
quasi-2D crystal. The particle density induced in the vicinity
of the zeroth quasi-2D crystal is

nG(q,z,ω) =
∑
G′

∫
χGG′(q,z,z′,ω)veff

G′ (q,z′,ω)dz′, (A1)

with

veff
G (q,z,ω) = vext

G (q,z,ω)

+ 2π

q
δG0

∫ d/2

−d/2
n0(q,z′,ω)dz′

∞∑
m=−∞

′
e−q|z−md|,

(A2)

where the second term accounts for the influence of all m �= 0
2D crystals and the prime at the sum means that the m = 0
term is excluded from the summation. Equations (A1) and (A2)

yield

nG(q,z,ω) =
∑
G′

∫
χGG′(q,z,z′,ω)vext

G′ (q,z′,ω)dz′

+ 4πn2D
0 (q,ω)

q(eqd − 1)

∫
χG0(q,z,z′,ω) cosh(qz′)dz′,

(A3)

where

n2D
0 (q,ω) =

∑
G

∫
χ0G(q,z,z′,ω)vext

G (q,z′,ω)dz dz′

1 − 4π
q(eqd−1)

∫
χ00(q,z,z′,ω) cosh(qz′)dz dz′

(A4)

is the zeroth Fourier coefficient of the 2D particle density. In
Eqs. (A3) and (A4) we can safely put cosh(qz′) to 1, since
we are in the regime when qa � 1, where a is the z-direction
width of the quasi-2D crystal. Then by Eqs. (A3) and (A4)
and using the definition of the density-response function of
the array system, which we denote by χ̃ , we can write

χ̃Gg,G′g′(q,ω) = χGg,G′g′(q,ω) + χGg,00(q,ω)χ00,G′g′(q,ω)
q(eqd−1)

4πd
− χ00,00(q,ω)

,

(A5)

where

χGg,G′g′(q,ω) = 1

d

∫
χGG′(q,z,z′,ω)ei(g′z′−gz)dz dz′, (A6)

and g’s are the reciprocal vectors of the periodic array in z

direction.
Equation (A5) can be inverted to express the density-

response function χ of the single quasi-2D crystal through
χ̃—the density-response function of the array of such crystals.
Setting all indices to zero in Eq. (A5) and resolving in respect
to χ00,00, we have

χ00,00(q,ω) = χ̃00,00(q,ω)

1 + 4πd
q(eqd−1) χ̃00,00(q,ω)

. (A7)

Then setting (G′g′) = (00) in Eq. (A5), we have the first of the
Eqs. (A8)

χGg,00(q,ω) =
[

1 − 4πd

q(eqd − 1)
χ0000(q,ω)

]
χ̃Gg,00(q,ω),

χ00,G′g′ (q,ω) =
[

1 − 4πd

q(eqd − 1)
χ00,00(q,ω)

]
χ̃00,G′g′(q,ω),

(A8)

and similarly for the second of these equations. Finally, we
write

χGg,G′g′(q,ω) = χ̃Gg,G′g′(q,ω) − χGg,00(q,ω)χ00,G′g′(q,ω)
q(eqd−1)

4πd
− χ00,00(q,ω)

.

(A9)

Together, Eqs. (A9), (A8), and (A7) solve the problem of the
isolation of the single 2D-crystal response from that of the
surrounding members of the array.
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For the dielectric functions we can write

1

ε̃(q,ω)
= 1 + 4π

q2
χ̃00,00(q,ω), (A10)

1

ε2D(q,ω)
= 1 + 2πd

q
χ00,00(q,ω). (A11)

With the use of Eqs. (A10), (A11), and (A7) we arrive at
Eq. (1).

We conclude this section with a short discussion of the range
of the applicability of Eqs. (1) and (A7)–(A9) and consider
some limiting cases. First of all, d must be larger than the
effective width of a quasi-2D crystal, i.e., the wave functions
of two adjacent layers must not overlap. This constitutes only
a weak lower bound on d, since d � 10 a.u. usually already
satisfies the requirement. Secondly, through this section we
assume that Gd � 1 for all G �= 0, which ensures that all the
harmonics of the field but the zeroth die out on the distance
from one layer to another. The restriction this imposes is
approximately the same as the previous one. With the above
two requirements satisfied, Eqs. (1) and (A7)–(A9) are valid
with no additional restriction on the lower bound of q.

For qd � 1, Eq. (1) reduces to

1

ε2D(q,ω)
= 1 + qd

2

[
1

ε3D(q,ω; d)
− 1

]
, (A12)

which can be easily understood in terms of an array of
noninteracting sheets of the density n2D comprising the 3D
density n3D = n2D/d.

It must be noted that the derivation of this section has
been carried out in terms of the interacting-particles density-
response function χ and it does not rely on a particular relation
between the latter and the Kohn-Sham independent-particles
density-response function χs .

APPENDIX B: ACOUSTIC PLASMON IN GRAPHENE

There exists a controversy in the literature regarding the
nature of the low-energy excitations in graphene. In Ref. [16],
the excitation presented in our Fig. 1 has been identified as
a plasmon. However, it was mistakenly given the name of
“nonlinear plasmon”, while we have shown that it has the
linear (acoustic) dispersion at small wave vectors. The reason
for the confusion was that the dispersion in Ref. [16] was
studied starting from larger values of the wave vector, while
referring to the dispersion law one usually means this at small
(vanishing) wave vector (cf. the square root dispersion of the
2D sheet plasmon [27]). Note that no proof that the excitation
is plasmon has been provided in Ref. [16].

On the other hand, in Ref. [17], this excitation has been
identified as an acoustic plasmon. We, however, disagree with
the definition of the 2D dielectric function adopted by the
authors of that paper [Eq. (1) of Ref. [17]]. That definition has
two obvious faults. (i) The sum in the right-hand side (RHS) of
Eq. (1) is the 3D charge density at the point z = 0 rather than
being the 2D charge density. Therefore, the multiplication of
it by the 2D Coulomb potential makes no sense. And (ii), as a
consequence of (i), the second term in the RHS of Eq. (1) is
not dimensionless, while the first term is.
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FIG. 8. (Color online) Evolution of the acoustic plasmon in
graphene with the increase of the wave vector. Top: The energy-loss
function −Im 1/ε2D(q,ω). Bottom: The dielectric function ε2D(q,ω).
Lines labeled 1,2,3, and 4 correspond to q = 0.077,0.092,0.105, and
0.120 a.u., respectively.

It is, therefore, necessary to prove anew that the excitation
in question, exhibiting the linear dispersion law, is a plasmon
rather than, say, a single-particle excitation. In simple cases,
it is usual to identify a peak at the energy-loss function as
a plasmon if the real part of the dielectric function crosses
zero at the same frequency. But what if Re ε(q,ω) comes close
to the ω axis without crossing it? In Fig. 8, we plot the 2D
dielectric function and the energy-loss function of graphene
at larger values of q. For lines labeled with 4, we clearly deal
with a plasmon since Re ε crosses zero at ω ≈ 0.95 eV. For
smaller q (lines labeled with 1, 2, and 3), Re ε does not reach
zero, although its modulus has minima. Clearly, peaks at the
energy-loss function are associated with these minima, rather
than with the maxima at Im ε, the latter contributing to the
sloping right wings of the peaks at the energy-loss function.
We, therefore, deal with plasmons in the 1, 2, and 3 cases
as well, although mixed with single-particle transitions. The
same situation is realized for smaller q in Fig. 1, as can be
judged from Fig. 2, dashed black line, corresponding to the
frozen-lattice calculation.

We note that in this more complicated situation than that
with a pure plasmon characterized with the zero crossing
by Re ε, the term of “acoustic plasmon” should be used
with the clear understanding of the picture detailed above.
Possibly, “linearly dispersed collective excitation” could make
an alternative naming. We, however, stick to the first term
believing that, used mindfully, it well conveys the essence of
the matter.

APPENDIX C: DYNAMIC RESPONSE OF THE LATTICE:
DERIVATION OF EQ. (13)

We perform the 2D Fourier transform of Eq. (12),

δφI
b (G + q,z,ω) = 2πi

s0

∑
α

Zαeα · Y(G + q,z)e−i(G+q)·bα ,

(C1)
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where the vector function Y is defined by Eq. (17). Inverting Eq. (11) in the reciprocal space, we can write

δφ(G + q,z,ω) =
∑
G′

∫
ε−1

GG′ (q,z,z′,ω)
[
δφext(G′ + q,z′,ω) + δφI

b (G′ + q,z′,ω)
]
dz′. (C2)

Then we can write for the gradient of the effective potential

∇ δφeff
α0(r,ω)

∣∣
r=bα

=
∑
GG′

ei(G+q)·bα

[
i(G + q) + ẑ

∂

∂z

] ∫ ⎧⎨
⎩ε−1

GG′(q,z,z′,ω)φext(G′ + q,z′,ω)

+ 2πi

s0

∑
β

Zβe−i(G′+q)·bβ

∫ [
ε−1

GG′(q,z,z′,ω) − δGG′δ(z − z′)
]

eβ · Y(G′ + q,z′)

⎫⎬
⎭

z=0

dz′

−
∑

(βR)�=(α0)

eiq·R∇(eβ · ∇)
Zβ

|r − bβ − R|

∣∣∣∣∣∣
r=bα

. (C3)

We make use of the static sum rule [34]

∇n0(r) = −
∫

χ (r,r′,0)∇′vext(r′)dr′. (C4)

Then ∫ ∇n0(r′)
|r′ − r| dr′ = lim

q→0

2πi

s0

∑
αGG′

Zα

∫ [
ε−1

GG′(q,z,z′,0) − δGG′δ(z − z′)
]

Y(G′ + q,z′)ei(G+q)·re−i(G′+q)·bα dz′. (C5)

Finally, we have for the force acting on the αth nucleus

Fαi = F ext
αi (q,ω) + F ei

αi(q,ω) +
∑
βk

Nαi,βk(q,ω)eβk, (C6)

Nαi,βk(q,ω) = Pαi,βk(q,ω) − δαβ

∑
γ

Pαi,γ k(0,0), (C7)

where

F ext
αi = −Zα

∑
G

ei(G+q)·bα

[
i(Gi + qi) + ẑi

∂

∂z

]
φext(G + q,z,ω)

∣∣∣∣
z=0

, (C8)

F ei
αi = 2πZαi

∑
GG′

∫
Yi(G + q,z)χGG′(q,z,z′,ω)ei(G+q)·bαφext(G′ + q,z′,ω)dz dz′, (C9)

Pαi,βk(q,ω) = Qαi,βk(q,ω) + Sαi,βk(q), (C10)

Qαi,βk(q,ω) = − (2π )2

s0

∑
GG′

ZαZβei(G+q)·bα e−i(G′+q)·bβ

∫
Yi(G + q,z)χGG′(q,z,z′,ω)Yk(G′ + q,z′)dz dz′, (C11)

Sαi,βk(q) =
∑

R

[1 − δR0δβα]eiq·R∇i∇k

ZαZβ

|r − bβ − R|
∣∣∣∣
r=bα

. (C12)

Noting that within the static approximation (ω = 0) our theory reduces to the conventional density-functional perturbation
theory (DFPT) [15], we can conveniently rewrite Eq. (C6) as Eq. (13).

It is convenient for calculations to perform the following Fourier transforms

χGG′(q,z,z′,ω) = 1

d

∑
gg′

χGgG′g′ (q,ω)ei(gz−g′z′) (C13)

into Eqs. (15) and (16). With the notation

Y(p,g) =
∫ d/2

−d/2
Y(p,z)e−igzdz = − 2

g2 + p2

{[
p + e− dp

2

(
g sin

dg

2
− p cos

dg

2

)]
p̂ +

[
g − e− dp

2

(
g cos

dg

2
+ p sin

dg

2

)]
ẑ
}
,

(C14)
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we can write

F ext
αi = −iZα

∑
Gg

ei(G+q)·bα [Gi + qi + ẑig] φext(G + q,g,ω), (C15)

F ei
αi = 2πiZα

∑
GgG′g′

ei(G+q)·bαYi(G + q,−g)χGgG′g′(q,ω)φext(G′ + q,g′,ω), (C16)

Qαi,βk(q,ω) = − (2π )2

s0d

∑
GgG′g′

ZαZβei(G+q)·bα e−i(G′+q)·bβ Yi(G + q,−g)χGgG′g′(q,ω)Yk(G′ + q,g′). (C17)

APPENDIX D: TOTAL DIELECTRIC FUNCTION

To find the total (including electron and ion subsystems
motion) dielectric function, we write according to Eqs. (C2)
and (C1)

δρ tot
2D(q,ω) = d

∑
G′g′

χ00G′g′(q,ω)
[
δφext(G′ + q,g′,ω)

+ δφI
b (G′ + q,g′,ω)

] + δρI
2D,b(q,ω), (D1)

where

δφI
b (G + q,g,ω) = 2πi

s0d

∑
α

Zαeα · Y(G + q,g)e−i(G+q)·bα

(D2)

and

δρI
2D,b(G + q,ω) = − i

s0

∑
α

Zαeα · (G + q)e−i(G+q)·bα . (D3)

APPENDIX E: COMPARISON WITH EXPERIMENT
AND THE STATIC COUPLING

Reference [35] reports the electron energy-loss spectra
(EELS) measurements for monolayer graphene deposited on
SiC substrate. In Fig. 9 we plot a representative experimental

0 0.1 0.2 0.3 0.4 0.5 0.6

In
te

n
si

ty
(a

rb
.u

.)

ω (eV)

Experiment
Theory

FIG. 9. (Color online) Experimental loss spectrum for 1 ML
graphene grown on H-etched SiC(0001) for q = 0.026 a.u. [35]
(black solid line) and our theory with account of the screening by
the substrate (red dashed line).

spectrum together with the results of our calculation with the
parameters corresponding to the experiment. Since the doping
level was not conclusively determined in Ref. [35], in our
calculation we adjusted it by fitting the position of the 2D
(sheet) plasmon (main feature in Fig. 9). The resulting value
of the doping was 1.75 × 1013 cm−2, which corresponds to the
Fermi level shift by 0.4 eV. The influence of the substrate was
included phenomenologically by the static dielectric function
of SiC (ε∞ = 6.52).

Comparing the theoretical and experimental results, we
see that while the general trends are similar, quantitatively,
with respect to both the peaks’ position and the relative
peaks’ height, they are different. This, however, should not
be surprising, considering that the influence of the substrate
has been included within a much simplified model (ignoring
its atomic structure).

Two more things must be said regarding the comparison
between the theory and an EELS experiment. (i) The inelastic
scattering of electrons in a reflection experiment is conven-
tionally described by the so-called g function [36], which is
defined as an amplitude of the outgoing e−qz wave produced
in response to the perturbation by the eqz with unit amplitude.
The g function is, therefore, a quantity different from the
2D energy-loss function, and to obtain it requires a separate
calculation with the external field of φext(r,t) = eqzei(q·r−ωt).
The theoretical curve in Fig. 9 is obtained with this new
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FIG. 10. (Color online) Total dielectric function of graphene with
the full dynamic coupling of the electronic and phononic degrees of
freedom (red solid line, labeled “Coupled”) and that obtained without
the last term in Eq. (13) (black dashed line, labeled “Uncoupled”).
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calculation. (ii) The description of the reflection EELS with
the g function is valid only under the condition that the
scattering of the incident electron takes place outside the
electron density of the target (dipole scattering). Otherwise,
for the impact scattering, a more involved technique must be
used [37,38]. In our results in Fig. 9 we did not include the latter
effects.

Summarizing, to conduct a conclusive comparison between
the theory and experiment, EELS measurements on the

stand-alone graphene will be necessary, and we believe that
our work will motivate further experimental efforts.

Finally, let us consider the relationship with the uncoupled
case. In Eq. (13), the last term is responsible for the dynamic
coupling of the electronic and phononic degrees of freedom
of 2D crystal. It is, therefore, instructive to compare results
obtained with and without that term. In Fig. 10 we do this for
graphene for q = 0.021 a.u., the difference clearly showing
the importance of the dynamic coupling.
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