835 research outputs found
Encircling the dark: constraining dark energy via cosmic density in spheres
The recently published analytic probability density function for the mildly
non-linear cosmic density field within spherical cells is used to build a
simple but accurate maximum likelihood estimate for the redshift evolution of
the variance of the density, which, as expected, is shown to have smaller
relative error than the sample variance. This estimator provides a competitive
probe for the equation of state of dark energy, reaching a few percent accuracy
on wp and wa for a Euclid-like survey. The corresponding likelihood function
can take into account the configuration of the cells via their relative
separations. A code to compute one-cell density probability density functions
for arbitrary initial power spectrum, top-hat smoothing and various spherical
collapse dynamics is made available online so as to provide straightforward
means of testing the effect of alternative dark energy models and initial
power-spectra on the low-redshift matter distribution.Comment: 7 pages, replaced to match the MNRAS accepted versio
Computation of optimized arrays for 3-D electrical imaging surveys
3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The ‘Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional array
537Microparticles and exosomes differentially impact on endothelial cell function in coronary artery disease
Background and Purpose: Microparticles (MPs) and exosomes are released by cells using different mechanisms. Thus, quantitative as well as qualitative changes of both particle populations, MPs and exosomes, in patients with coronary artery disease (CAD) might reflect an altered activation status of the endothelium, platelets and leukocytes. Moreover, they might exert differential effects on the target organs, such as the endothelium. Yet, alterations in both populations have not been studied side-by-side so far. The aim of the study was to compare the impact of MPs and exosomes from healthy subjects and CAD patients on endothelial cell (EC) functional characteristics. Methods: MPs and exosomes were isolated by stepwise filtration and ultracentrifugation from citrate-plasma and verified by electron microscopy and dynamic light scattering. MP and exosome fractions, as well as the vehicle (PBS), were added to human arterial ECs and EC apoptosis, number, size, capacity for in vitro-reendothelialisation after scratching, expression of adhesion molecules ICAM-1 and VCAM-1 were assessed. In parallel, platelet-, endothelial- and leukocyte-derived MPs were quantified. In a separate sub-study, the same parameters were assessed in plasma of CAD patients undergoing standard medical rehabilitation or an exercise-based cardiac rehabilitation programme. Results: MPs of healthy, but not of CAD patients supported in vitro re-endothelialisation, while exosomes had no influence. Exercise, but not standard rehabilitation improved CAD MP capacity to support in vitro rehabilitation. This was negatively correlated to the number of leukocyte- and endothelial-derived MPs, but not total or platelet MPs. EC number was negatively affected by exposure to CAD MPs. ANCOVA analysis identified disease, but not the particle type as influencing factor. Instead, apoptotic cell death was influenced by particle type, but not by the disease, and was not altered in rehabilitation. Similarly, ICAM-1 and VCAM-1 expression were enhanced on ECs after incubation with exosomes, but not with MPs, with no effect of disease or rehabilitation. Conclusion: MPs and exosomes differentially affect endothelial cell function and underlie differential modulation in disease and rehabilitation. Those findings might in the future help to optimize and monitor cardiovascular therap
Assessing climate effects on railway earthworks Using MASW
Many parts of the UK’s rail network were constructed in the mid‐19th century long before the advent of
modern construction standards. Historic levels of low investment, poor maintenance strategies and the
deleterious effects of climate change have resulted in critical elements of the rail network being at
significant risk of failure. The majority of failures which have occurred over recent years have been
triggered by extreme weather events. Advance assessment and remediation of earthworks is, however,
significantly less costly than dealing with failures reactively. It is therefore crucial that appropriate approaches
for assessment of the stability of earthworks are developed, so that repair work can be better targeted and
failures avoided wherever possible. This extended abstract briefly discusses some preliminary results from an
ongoing geophysical research project being carried out in order to study the impact of climate or seasonal
weather variations on the stability of a century old railway embankment on the Gloucestershire Warwickshire
steam railway line in Southern England
Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring
Adaptive optimal experimental design methods use previous data and results to guide the choice and design of future experiments. This paper describes the formulation of an adaptive survey design technique to produce optimal resistivity imaging surveys for time-lapse geoelectrical monitoring experiments. These survey designs are time-dependent and, compared to dipole–dipole or static optimized surveys that do not change over time, focus a greater degree of the image resolution on regions of the subsurface that are actively changing. The adaptive optimization method is validated using a controlled laboratory monitoring experiment comprising a well-defined cylindrical target moving along a trajectory that changes its depth and lateral position. The algorithm is implemented on a standard PC in conjunction with a modified automated multichannel resistivity imaging system. Data acquisition using the adaptive survey designs requires no more time or power than with comparable standard surveys, and the algorithm processing takes place while the system batteries recharge. The results show that adaptively designed optimal surveys yield a quantitative increase in image quality over and above that produced by using standard dipole–dipole or static (time–independent) optimized surveys
The Boundary Multiplet of N=4 SU(2)xU(1) Gauged Supergravity on Asymptotically-AdS_5
We consider N=4 SU(2)xU(1) gauged supergravity on asymptotically-AdS_5
backgrounds. By a near-boundary analysis we determine the boundary-dominant
components of the bulk fields from their partially gauge-fixed field equations.
Subdominant components are projected out in the boundary limit and we find a
reduced set of boundary fields, constituting the N=2 Weyl multiplet. The
residual bulk symmetries are found to act on the boundary fields as
four-dimensional diffeomorphisms, N=2 supersymmetry and (super-)Weyl
transformations. This shows that the on-shell N=4 supergravity multiplet yields
the N=2 Weyl multiplet on the boundary with the appropriate local N=2
superconformal transformations. Building on these results we use the AdS/CFT
conjecture to calculate the Weyl anomaly of the dual four-dimensional
superconformal field theories in a generic bosonic N=2 conformal supergravity
background.Comment: 23 pages; to appear in JHE
Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria.
BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped for pfmdr1, pfatp6 and pfk13 loci by DNA sequencing and assessing pfmdr1 copy number variation (CNV) by real-time PCR. RESULTS: Pfmdr1-N86Y mutation was detected in 48, 10 and 10% in Lambaréné, Kumasi and Kisumu, respectively. At codon 184, the prevalence of the mutation was 73% in Lambaréné, 63% in Kumasi and 49% Kisumu. The S1034C and N1042D variants were absent at all three sites, while the frequency of the D1246Y mutation was 1, 3 and 13% in Lambaréné, Kumasi and Kisumu, respectively. Isolates with two pfmdr1 gene copy number predominantly harboured the N86Y wild-type allele and were mostly found in Kumasi (10%) (P < 0.0001). Among the main pfmdr1 haplotypes (NFD, NYD and YFD), NYD was associated with highest parasitaemia (P = 0.04). At the pfatp6 locus, H243Y and A623E mutations were observed at very low frequency at all three sites. The prevalence of the pfatp6 E431K variant was 6, 18 and 17% in Lambaréné, Kumasi and Kisumu, respectively. The L263E and S769N mutations were absent in all isolates. The pfk13 variants associated with artemisinin resistance in Southeast Asia were not observed. Eleven novel substitutions in the pfk13 locus occurring at low frequency were observed. CONCLUSIONS: Artemisinins are still highly efficacious in large malaria-endemic regions though declining efficacy has occurred in Southeast Asia. The return of chloroquine-sensitive strains following the removal of drug pressure is observed. However, selection of wild-type alleles in the multidrug-resistance gene and the increased gene copy number is associated with reduced lumefantrine sensitivity. This study indicates a need to constantly monitor drug resistance to artemisinin in field isolates from malaria-endemic countries
The Schrdinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics
In this paper it is argued how the dynamics of the classical Newtonian N-body
system can be described in terms of the Schrdinger-Poisson equations
in the large limit. This result is based on the stochastic quantization
introduced by Nelson, and on the Calogero conjecture. According to the Calogero
conjecture, the emerging effective Planck constant is computed in terms of the
parameters of the N-body system as , where is the gravitational constant, and are the
number and the mass of the bodies, and is their average density. The
relevance of this result in the context of large scale structure formation is
discussed. In particular, this finding gives a further argument in support of
the validity of the Schrdinger method as numerical double of the
N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.
Problems of modern programming used in the technology of transport processes
It is well known that information technologies are the most rapidly developing areas of modern life. New technology, designs, names and abbreviations appear almost every day.While creating the products application programming, depending on the industry in which a project is, at the forefront come priority challenges that require extraordinary solutions. This could be accuracy of the solution in the physics-mathematical calculations, the speed of calculations in the programs that implement the reaction or improved interface in products aimed for users, as well as solutions for tasks that implement specific requirements for group work.Mankind has shown interest in the search of the optimal route of application programming and mathematical solution of transportation tasks, allowing to calculate the best route at the lowest cost
Inadequacy of zero-width approximation for a light Higgs boson signal
In the Higgs search at the LHC, a light Higgs boson (115 GeV <~ M_H <~ 130
GeV) is not excluded by experimental data. In this mass range, the width of the
Standard Model Higgs boson is more than four orders of magnitude smaller than
its mass. The zero-width approximation is hence expected to be an excellent
approximation. We show that this is not always the case. The inclusion of
off-shell contributions is essential to obtain an accurate Higgs signal
normalisation at the 1% precision level. For gg (-> H) -> VV, V= W,Z, O(10%)
corrections occur due to an enhanced Higgs signal in the region M_VV > 2 M_V,
where also sizable Higgs-continuum interference occurs. We discuss how
experimental selection cuts can be used to exclude this region in search
channels where the Higgs invariant mass cannot be reconstructed. We note that
the H -> VV decay modes in weak boson fusion are similarly affected.Comment: 26 pages, 18 figures, 6 tables; added references, expanded
introduction, version to appear in JHE
- …
