279 research outputs found

    Dissipation induced coherence of a two-mode Bose-Einstein condensate

    Full text link
    We discuss the dynamics of a Bose-Einstein condensate in a double-well trap subject to phase noise and particle loss. The phase coherence of a weakly-interacting condensate as well as the response to an external driving show a pronounced stochastic resonance effect: Both quantities become maximal for a finite value of the dissipation rate matching the intrinsic time scales of the system. Even stronger effects are observed when dissipation acts in concurrence with strong inter-particle interactions, restoring the purity of the condensate almost completely and increasing the phase coherence significantly.Comment: 10 pages, 5 figure

    Desiccation stress in two intertidal beachrock biofilms

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2014. Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid and complete recovery upon rehydration. In contrast, the pink biofilm from the mid-intertidal zone, dominated by Blennothrix sp., showed no distinct response to desiccation stress and instead maintained reduced photosynthesis throughout drying and re-wetting cycles. Spatial differences in photosynthetic activity within the black biofilm were evident with a faster recovery rate of photosynthesis in the surface cyanobacteria than in the deeper layers of the biofilm. There was no variation with depth in the pink biofilm. The photophysiological differences in desiccation responses between the beachrock biofilms exemplify the ecological niche specialisation of these complex microbial communities, where the functional differences help to explain their vertical distribution on the intertidal shoreline

    The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex

    Get PDF
    Iron availability strongly governs the growth of Southern Ocean phytoplankton. To investigate how iron limitation affects photosynthesis as well as the uptake of carbon and iron in the Antarctic diatom Chaetoceros simplex, a combination of chlorophyll a fluorescence measurements and radiotracer incubations in the presence and absence of chemical inhibitors was conducted. Iron limitation in C. simplex led to a decline in growth rates, photochemical efficiency and structural changes in photosystem II (PSII), including a reorganisation of photosynthetic units in PSII and an increase in size of the functional absorption cross section of PSII. Iron-limited cells further exhibited a reduced plastoquinone pool and decreased photosynthetic electron transport rate, while non-photochemical quenching and relative xanthophyll pigment content were strongly increased, suggesting a photoprotective response. Additionally, iron limitation resulted in a strong decline in carbon fixation and thus the particulate organic carbon quotas. Inhibitor studies demonstrated that, independent of the iron supply, carbon fixation was dependent on internal, but not on extracellular carbonic anhydrase activity. Orthovanadate more strongly inhibited iron uptake in iron-limited cells, indicating that P-type ATPase transporters are involved in iron uptake. The stronger reduction in iron uptake by ascorbate in iron-limited cells suggests that the re-oxidation of iron is required before it can be taken up and further supports the presence of a high-affinity iron transport pathway. The measured changes to photosystem architecture and shifts in carbon and iron uptake strategies in C. simplex as a result of iron limitation provide evidence for a complex interaction of these processes to balance the iron requirements for photosynthesis and carbon demand for sustained growth in iron-limited waters. © 2014 The Author(s)

    COMPETITION AMONG HOSPITALS AND ITS MEASUREMENT: THEORY AND A CASE STUDY

    Get PDF
    Our paper provides several insights on the characteristics of the concept of “Poles d’Excellence Rurale” (PER) through bilateral comparisons with that of Competitive Pole (CP) and cluster. The concept of PER is a French government’ initiative designed for the development of rural areas similar to that of the Competitive Pole. We emphasize important particularities of these concepts by analyzing some of their similarities and major differences.Pole d’Excellence Rurale, Competitive Pole, cluster, rural development

    Resonance solutions of the nonlinear Schr\"odinger equation in an open double-well potential

    Full text link
    The resonance states and the decay dynamics of the nonlinear Schr\"odinger (or Gross-Pitaevskii) equation are studied for a simple, however flexible model system, the double delta-shell potential. This model allows analytical solutions and provides insight into the influence of the nonlinearity on the decay dynamics. The bifurcation scenario of the resonance states is discussed, as well as their dynamical stability properties. A discrete approximation using a biorthogonal basis is suggested which allows an accurate description even for only two basis states in terms of a nonlinear, nonhermitian matrix problem.Comment: 21 pages, 14 figure

    Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Get PDF
    High molecular weight (300–650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C<sub>10</sub>H<sub>16</sub>) oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO<sub>3</sub><sup>−</sup>) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO<sub>4</sub><sup>−</sup> (Hyytiälä) and C<sub>3</sub>F<sub>5</sub>O<sub>2</sub><sup>−</sup> (JPAC). The most abundant products in the ion spectra were identified as C<sub>10</sub>H<sub>14</sub>O<sub>7</sub>, C<sub>10</sub>H<sub>14</sub>O<sub>9</sub>, C<sub>10</sub>H<sub>16</sub>O<sub>9</sub>, and C<sub>10</sub>H<sub>14</sub>O<sub>11</sub>. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C<sub>9</sub> compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10<sup>6</sup>–10<sup>7</sup> molec cm<sup>−3</sup>). This is in a similar range as the amount of gaseous H<sub>2</sub>SO<sub>4</sub> in Hyytiälä during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and growth may be important and needs to be explored in more detail in the future

    The nonlinear Schroedinger equation for the delta-comb potential: quasi-classical chaos and bifurcations of periodic stationary solutions

    Full text link
    The nonlinear Schroedinger equation is studied for a periodic sequence of delta-potentials (a delta-comb) or narrow Gaussian potentials. For the delta-comb the time-independent nonlinear Schroedinger equation can be solved analytically in terms of Jacobi elliptic functions and thus provides useful insight into the features of nonlinear stationary states of periodic potentials. Phenomena well-known from classical chaos are found, such as a bifurcation of periodic stationary states and a transition to spatial chaos. The relation of new features of nonlinear Bloch bands, such as looped and period doubled bands, are analyzed in detail. An analytic expression for the critical nonlinearity for the emergence of looped bands is derived. The results for the delta-comb are generalized to a more realistic potential consisting of a periodic sequence of narrow Gaussian peaks and the dynamical stability of periodic solutions in a Gaussian comb is discussed.Comment: Enhanced and revised version, to appear in J. Nonlin. Math. Phy

    Comparison of emission ratios from on-road sources using a mobile laboratory under various driving and operational sampling modes

    No full text
    International audienceMobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program for the Mexicali-Imperial Valley in 2005. In this paper we analyze the variability of measured emission ratios for emitted NOx, CO, specific VOCs, NH3, and some primary fine particle components and properties obtained during the Border Ozone Reduction and Air Quality Improvement Program for the Mexicali-Imperial Valley in 2005 by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. On-road heavy-duty diesel truck (HDDT) nitrogen oxides emissions were measured near Austin, Texas, as well as in both Mexican cities, with NOy emission ratios in Austin < Mexico City < Mexicali

    Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Get PDF
    Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP) for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx [NO subscript x], CO, specific VOCs, NH3 [NH subscript 3], and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx [NO subscript x] mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 [NH subscript 3] emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. Nitrogen oxides emissions for on-road heavy-duty diesel truck (HDDT) were measured near Austin, Texas, as well as in both Mexican cities, with NOy [NO subscript y] emission ratios in Austin < Mexico City < Mexicali.Mexico. Comisión Ambiental MetropolitanaNational Science Foundation (U.S.) (Grant ATM-0528227)Molina Center for Energy and the EnvironmentUniversity of Texas at AustinLatin American Scholarship Program of American Universitie

    Cross-Disciplinarity in the Advance of Antarctic Ecosystem Research

    Get PDF
    The biodiversity, ecosystem services and climate variability of the Antarctic continent, and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaption of the Scientific Committee on Antarctic Research, which focused on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas, and first steps in their implementation, were clustered into eight themes, ranging from scale problems, risk maps, organism and ecosystem responses to multiple environmental changes, to evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in the research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. New strategies in academic education are proposed. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind
    corecore